- -

Uniform Convergence and Spectra of Operators ina Class of Fréchet Spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Uniform Convergence and Spectra of Operators ina Class of Fréchet Spaces

Show full item record

Albanese, AA.; Bonet Solves, JA.; Ricker, WJ. (2014). Uniform Convergence and Spectra of Operators ina Class of Fréchet Spaces. Abstract and Applied Analysis. 2014:1-16. https://doi.org/10.1155/2014/179027

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/40372

Files in this item

Item Metadata

Title: Uniform Convergence and Spectra of Operators ina Class of Fréchet Spaces
Author: Albanese, Angela A. Bonet Solves, José Antonio Ricker, Werner J.
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Issued date:
Abstract:
Well-known Banach space results (e.g., due to J. Koliha and Y. Katznelson/L. Tzafriri), which relate conditions on the spectrum of a bounded operator T to the operator norm convergence of certain sequences of operators ...[+]
Subjects: Nuclear hothe quotients , Mean ergodic operators , Theorem
Copyrigths: Reconocimiento (by)
Source:
Abstract and Applied Analysis. (issn: 1085-3375 )
DOI: 10.1155/2014/179027
Publisher:
Hindawi Publishing Corporation
Publisher version: http://dx.doi.org/10.1155/2014/179027
Project ID:
info:eu-repo/grantAgreement/MICINN//MTM2010-15200/ES/METODOS DE ANALISIS FUNCIONAL PARA EL ANALISIS MATEMATICO/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/
Thanks:
The research of the first two authors was partially supported by the projects MTM2010-15200 and GVA Prometeo II/2013/013 (Spain). The second author gratefully acknowledges the support of the Alexander von Humboldt Foundation.[+]
Type: Artículo

References

Koliha, J. J. (1974). Power convergence and pseudoinverses of operators in Banach spaces. Journal of Mathematical Analysis and Applications, 48(2), 446-469. doi:10.1016/0022-247x(74)90170-x

Krengel, U. (1985). Ergodic Theorems. doi:10.1515/9783110844641

Lin, M. (1974). On the uniform ergodic theorem. Proceedings of the American Mathematical Society, 43(2), 337-337. doi:10.1090/s0002-9939-1974-0417821-6 [+]
Koliha, J. J. (1974). Power convergence and pseudoinverses of operators in Banach spaces. Journal of Mathematical Analysis and Applications, 48(2), 446-469. doi:10.1016/0022-247x(74)90170-x

Krengel, U. (1985). Ergodic Theorems. doi:10.1515/9783110844641

Lin, M. (1974). On the uniform ergodic theorem. Proceedings of the American Mathematical Society, 43(2), 337-337. doi:10.1090/s0002-9939-1974-0417821-6

Albanese, A. A., Bonet, J., & Ricker, W. J. (2013). Convergence of arithmetic means of operators in Fréchet spaces. Journal of Mathematical Analysis and Applications, 401(1), 160-173. doi:10.1016/j.jmaa.2012.11.060

Katznelson, Y., & Tzafriri, L. (1986). On power bounded operators. Journal of Functional Analysis, 68(3), 313-328. doi:10.1016/0022-1236(86)90101-1

Eberlein, W. F. (1949). Abstract ergodic theorems and weak almost periodic functions. Transactions of the American Mathematical Society, 67(1), 217-217. doi:10.1090/s0002-9947-1949-0036455-9

Bellenot, S. F., & Dubinsky, E. (1982). Frechet Spaces with Nuclear Kothe Quotients. Transactions of the American Mathematical Society, 273(2), 579. doi:10.2307/1999929

Moscatelli, V. B. (1980). Fréchet Spaces without continuous Norms and without Bases. Bulletin of the London Mathematical Society, 12(1), 63-66. doi:10.1112/blms/12.1.63

Domański, P. (1993). Twisted Fréchet Spaces of Continuous Functions. Results in Mathematics, 23(1-2), 45-48. doi:10.1007/bf03323129

Dierolf, S., & Zarnadze, D. N. (1984). A note on strictly regular Fr�chet spaces. Archiv der Mathematik, 42(6), 549-556. doi:10.1007/bf01194053

Önal, S., & Terzioğlu, T. (1990). Unbounded linear operators and nuclear Köthe quotients. Archiv der Mathematik, 54(6), 576-581. doi:10.1007/bf01188687

Vogt, D. (1989). On Two Problems of Mityagin. Mathematische Nachrichten, 141(1), 13-25. doi:10.1002/mana.19891410103

Behrends, E., Dierolf, S., & Harmand, P. (1986). On a problem of Bellenot and Dubinsky. Mathematische Annalen, 275(3), 337-339. doi:10.1007/bf01458608

Moscatelli, V. (1990). Strongly nonnorming subspaces and prequojections. Studia Mathematica, 95(3), 249-254. doi:10.4064/sm-95-3-249-254

Metafune, G., & Moscatelli, V. B. (1992). Prequojections and their duals. North-Holland Mathematics Studies, 215-232. doi:10.1016/s0304-0208(08)70321-9

Albanese, A. A., Bonet, J., & Ricker, W. J. (2009). Grothendieck spaces with the Dunford–Pettis property. Positivity, 14(1), 145-164. doi:10.1007/s11117-009-0011-x

Albanese, A. A., Bonet, J., & Ricker, W. J. (2010). <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>C</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>-semigroups and mean ergodic operators in a class of Fréchet spaces. Journal of Mathematical Analysis and Applications, 365(1), 142-157. doi:10.1016/j.jmaa.2009.10.014

Dierolf, S. (1993). Factorization of Montel operators. Studia Mathematica, 107(1), 15-32. doi:10.4064/sm-107-1-15-32

Díaz, J. C., & Domański, P. (1998). Reflexive operators with domain in Köthe spaces. manuscripta mathematica, 97(2), 189-204. doi:10.1007/s002290050096

Cascales, B., & Orihuela, J. (1987). On compactness in locally convex spaces. Mathematische Zeitschrift, 195(3), 365-381. doi:10.1007/bf01161762

Altman, M. (1953). Mean ergodic theorem in locally convex linear topological spaces. Studia Mathematica, 13(2), 190-193. doi:10.4064/sm-13-2-190-193

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record