Mostrar el registro sencillo del ítem
dc.contributor.author | Albanese, Angela A. | es_ES |
dc.contributor.author | Bonet Solves, José Antonio | es_ES |
dc.contributor.author | Ricker, Werner J. | es_ES |
dc.date.accessioned | 2014-09-29T07:21:28Z | |
dc.date.available | 2014-09-29T07:21:28Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1085-3375 | |
dc.identifier.uri | http://hdl.handle.net/10251/40372 | |
dc.description.abstract | Well-known Banach space results (e.g., due to J. Koliha and Y. Katznelson/L. Tzafriri), which relate conditions on the spectrum of a bounded operator T to the operator norm convergence of certain sequences of operators generated by T, are extended to the class of quojection Fr¿echet spaces.These results are then applied to establish various mean ergodic theorems for continuous operators acting in such Fr¿echet spaces and which belong to certain operator ideals, for example, compact, weakly compact, and Montel. | es_ES |
dc.description.sponsorship | The research of the first two authors was partially supported by the projects MTM2010-15200 and GVA Prometeo II/2013/013 (Spain). The second author gratefully acknowledges the support of the Alexander von Humboldt Foundation. | en_EN |
dc.language | Español | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Abstract and Applied Analysis | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Nuclear hothe quotients | es_ES |
dc.subject | Mean ergodic operators | es_ES |
dc.subject | Theorem | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Uniform Convergence and Spectra of Operators ina Class of Fréchet Spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2014/179027 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-15200/ES/METODOS DE ANALISIS FUNCIONAL PARA EL ANALISIS MATEMATICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.description.bibliographicCitation | Albanese, AA.; Bonet Solves, JA.; Ricker, WJ. (2014). Uniform Convergence and Spectra of Operators ina Class of Fréchet Spaces. Abstract and Applied Analysis. 2014:1-16. https://doi.org/10.1155/2014/179027 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2014/179027 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2014 | es_ES |
dc.relation.senia | 257670 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Alexander von Humboldt Foundation | es_ES |
dc.description.references | Koliha, J. J. (1974). Power convergence and pseudoinverses of operators in Banach spaces. Journal of Mathematical Analysis and Applications, 48(2), 446-469. doi:10.1016/0022-247x(74)90170-x | es_ES |
dc.description.references | Krengel, U. (1985). Ergodic Theorems. doi:10.1515/9783110844641 | es_ES |
dc.description.references | Lin, M. (1974). On the uniform ergodic theorem. Proceedings of the American Mathematical Society, 43(2), 337-337. doi:10.1090/s0002-9939-1974-0417821-6 | es_ES |
dc.description.references | Albanese, A. A., Bonet, J., & Ricker, W. J. (2013). Convergence of arithmetic means of operators in Fréchet spaces. Journal of Mathematical Analysis and Applications, 401(1), 160-173. doi:10.1016/j.jmaa.2012.11.060 | es_ES |
dc.description.references | Katznelson, Y., & Tzafriri, L. (1986). On power bounded operators. Journal of Functional Analysis, 68(3), 313-328. doi:10.1016/0022-1236(86)90101-1 | es_ES |
dc.description.references | Eberlein, W. F. (1949). Abstract ergodic theorems and weak almost periodic functions. Transactions of the American Mathematical Society, 67(1), 217-217. doi:10.1090/s0002-9947-1949-0036455-9 | es_ES |
dc.description.references | Bellenot, S. F., & Dubinsky, E. (1982). Frechet Spaces with Nuclear Kothe Quotients. Transactions of the American Mathematical Society, 273(2), 579. doi:10.2307/1999929 | es_ES |
dc.description.references | Moscatelli, V. B. (1980). Fréchet Spaces without continuous Norms and without Bases. Bulletin of the London Mathematical Society, 12(1), 63-66. doi:10.1112/blms/12.1.63 | es_ES |
dc.description.references | Domański, P. (1993). Twisted Fréchet Spaces of Continuous Functions. Results in Mathematics, 23(1-2), 45-48. doi:10.1007/bf03323129 | es_ES |
dc.description.references | Dierolf, S., & Zarnadze, D. N. (1984). A note on strictly regular Fr�chet spaces. Archiv der Mathematik, 42(6), 549-556. doi:10.1007/bf01194053 | es_ES |
dc.description.references | Önal, S., & Terzioğlu, T. (1990). Unbounded linear operators and nuclear Köthe quotients. Archiv der Mathematik, 54(6), 576-581. doi:10.1007/bf01188687 | es_ES |
dc.description.references | Vogt, D. (1989). On Two Problems of Mityagin. Mathematische Nachrichten, 141(1), 13-25. doi:10.1002/mana.19891410103 | es_ES |
dc.description.references | Behrends, E., Dierolf, S., & Harmand, P. (1986). On a problem of Bellenot and Dubinsky. Mathematische Annalen, 275(3), 337-339. doi:10.1007/bf01458608 | es_ES |
dc.description.references | Moscatelli, V. (1990). Strongly nonnorming subspaces and prequojections. Studia Mathematica, 95(3), 249-254. doi:10.4064/sm-95-3-249-254 | es_ES |
dc.description.references | Metafune, G., & Moscatelli, V. B. (1992). Prequojections and their duals. North-Holland Mathematics Studies, 215-232. doi:10.1016/s0304-0208(08)70321-9 | es_ES |
dc.description.references | Albanese, A. A., Bonet, J., & Ricker, W. J. (2009). Grothendieck spaces with the Dunford–Pettis property. Positivity, 14(1), 145-164. doi:10.1007/s11117-009-0011-x | es_ES |
dc.description.references | Albanese, A. A., Bonet, J., & Ricker, W. J. (2010). <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>C</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>-semigroups and mean ergodic operators in a class of Fréchet spaces. Journal of Mathematical Analysis and Applications, 365(1), 142-157. doi:10.1016/j.jmaa.2009.10.014 | es_ES |
dc.description.references | Dierolf, S. (1993). Factorization of Montel operators. Studia Mathematica, 107(1), 15-32. doi:10.4064/sm-107-1-15-32 | es_ES |
dc.description.references | Díaz, J. C., & Domański, P. (1998). Reflexive operators with domain in Köthe spaces. manuscripta mathematica, 97(2), 189-204. doi:10.1007/s002290050096 | es_ES |
dc.description.references | Cascales, B., & Orihuela, J. (1987). On compactness in locally convex spaces. Mathematische Zeitschrift, 195(3), 365-381. doi:10.1007/bf01161762 | es_ES |
dc.description.references | Altman, M. (1953). Mean ergodic theorem in locally convex linear topological spaces. Studia Mathematica, 13(2), 190-193. doi:10.4064/sm-13-2-190-193 | es_ES |