- -

Uniform Convergence and Spectra of Operators ina Class of Fréchet Spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Uniform Convergence and Spectra of Operators ina Class of Fréchet Spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Albanese, Angela A. es_ES
dc.contributor.author Bonet Solves, José Antonio es_ES
dc.contributor.author Ricker, Werner J. es_ES
dc.date.accessioned 2014-09-29T07:21:28Z
dc.date.available 2014-09-29T07:21:28Z
dc.date.issued 2014
dc.identifier.issn 1085-3375
dc.identifier.uri http://hdl.handle.net/10251/40372
dc.description.abstract Well-known Banach space results (e.g., due to J. Koliha and Y. Katznelson/L. Tzafriri), which relate conditions on the spectrum of a bounded operator T to the operator norm convergence of certain sequences of operators generated by T, are extended to the class of quojection Fr¿echet spaces.These results are then applied to establish various mean ergodic theorems for continuous operators acting in such Fr¿echet spaces and which belong to certain operator ideals, for example, compact, weakly compact, and Montel. es_ES
dc.description.sponsorship The research of the first two authors was partially supported by the projects MTM2010-15200 and GVA Prometeo II/2013/013 (Spain). The second author gratefully acknowledges the support of the Alexander von Humboldt Foundation. en_EN
dc.language Español es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Abstract and Applied Analysis es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Nuclear hothe quotients es_ES
dc.subject Mean ergodic operators es_ES
dc.subject Theorem es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Uniform Convergence and Spectra of Operators ina Class of Fréchet Spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2014/179027
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-15200/ES/METODOS DE ANALISIS FUNCIONAL PARA EL ANALISIS MATEMATICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Albanese, AA.; Bonet Solves, JA.; Ricker, WJ. (2014). Uniform Convergence and Spectra of Operators ina Class of Fréchet Spaces. Abstract and Applied Analysis. 2014:1-16. https://doi.org/10.1155/2014/179027 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2014/179027 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2014 es_ES
dc.relation.senia 257670
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Alexander von Humboldt Foundation es_ES
dc.description.references Koliha, J. J. (1974). Power convergence and pseudoinverses of operators in Banach spaces. Journal of Mathematical Analysis and Applications, 48(2), 446-469. doi:10.1016/0022-247x(74)90170-x es_ES
dc.description.references Krengel, U. (1985). Ergodic Theorems. doi:10.1515/9783110844641 es_ES
dc.description.references Lin, M. (1974). On the uniform ergodic theorem. Proceedings of the American Mathematical Society, 43(2), 337-337. doi:10.1090/s0002-9939-1974-0417821-6 es_ES
dc.description.references Albanese, A. A., Bonet, J., & Ricker, W. J. (2013). Convergence of arithmetic means of operators in Fréchet spaces. Journal of Mathematical Analysis and Applications, 401(1), 160-173. doi:10.1016/j.jmaa.2012.11.060 es_ES
dc.description.references Katznelson, Y., & Tzafriri, L. (1986). On power bounded operators. Journal of Functional Analysis, 68(3), 313-328. doi:10.1016/0022-1236(86)90101-1 es_ES
dc.description.references Eberlein, W. F. (1949). Abstract ergodic theorems and weak almost periodic functions. Transactions of the American Mathematical Society, 67(1), 217-217. doi:10.1090/s0002-9947-1949-0036455-9 es_ES
dc.description.references Bellenot, S. F., & Dubinsky, E. (1982). Frechet Spaces with Nuclear Kothe Quotients. Transactions of the American Mathematical Society, 273(2), 579. doi:10.2307/1999929 es_ES
dc.description.references Moscatelli, V. B. (1980). Fréchet Spaces without continuous Norms and without Bases. Bulletin of the London Mathematical Society, 12(1), 63-66. doi:10.1112/blms/12.1.63 es_ES
dc.description.references Domański, P. (1993). Twisted Fréchet Spaces of Continuous Functions. Results in Mathematics, 23(1-2), 45-48. doi:10.1007/bf03323129 es_ES
dc.description.references Dierolf, S., & Zarnadze, D. N. (1984). A note on strictly regular Fr�chet spaces. Archiv der Mathematik, 42(6), 549-556. doi:10.1007/bf01194053 es_ES
dc.description.references Önal, S., & Terzioğlu, T. (1990). Unbounded linear operators and nuclear Köthe quotients. Archiv der Mathematik, 54(6), 576-581. doi:10.1007/bf01188687 es_ES
dc.description.references Vogt, D. (1989). On Two Problems of Mityagin. Mathematische Nachrichten, 141(1), 13-25. doi:10.1002/mana.19891410103 es_ES
dc.description.references Behrends, E., Dierolf, S., & Harmand, P. (1986). On a problem of Bellenot and Dubinsky. Mathematische Annalen, 275(3), 337-339. doi:10.1007/bf01458608 es_ES
dc.description.references Moscatelli, V. (1990). Strongly nonnorming subspaces and prequojections. Studia Mathematica, 95(3), 249-254. doi:10.4064/sm-95-3-249-254 es_ES
dc.description.references Metafune, G., & Moscatelli, V. B. (1992). Prequojections and their duals. North-Holland Mathematics Studies, 215-232. doi:10.1016/s0304-0208(08)70321-9 es_ES
dc.description.references Albanese, A. A., Bonet, J., & Ricker, W. J. (2009). Grothendieck spaces with the Dunford–Pettis property. Positivity, 14(1), 145-164. doi:10.1007/s11117-009-0011-x es_ES
dc.description.references Albanese, A. A., Bonet, J., & Ricker, W. J. (2010). <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>C</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>-semigroups and mean ergodic operators in a class of Fréchet spaces. Journal of Mathematical Analysis and Applications, 365(1), 142-157. doi:10.1016/j.jmaa.2009.10.014 es_ES
dc.description.references Dierolf, S. (1993). Factorization of Montel operators. Studia Mathematica, 107(1), 15-32. doi:10.4064/sm-107-1-15-32 es_ES
dc.description.references Díaz, J. C., & Domański, P. (1998). Reflexive operators with domain in Köthe spaces. manuscripta mathematica, 97(2), 189-204. doi:10.1007/s002290050096 es_ES
dc.description.references Cascales, B., & Orihuela, J. (1987). On compactness in locally convex spaces. Mathematische Zeitschrift, 195(3), 365-381. doi:10.1007/bf01161762 es_ES
dc.description.references Altman, M. (1953). Mean ergodic theorem in locally convex linear topological spaces. Studia Mathematica, 13(2), 190-193. doi:10.4064/sm-13-2-190-193 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem