- -

Preparation of Glycerol Carbonate Esters by using Hybrid Nafion-Silica Catalyst

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preparation of Glycerol Carbonate Esters by using Hybrid Nafion-Silica Catalyst

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Climent Olmedo, María José es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Iborra Chornet, Sara es_ES
dc.contributor.author Martínez Silvestre, Sergio es_ES
dc.contributor.author Velty ., Alexandra es_ES
dc.date.accessioned 2014-09-29T10:14:31Z
dc.date.issued 2013-07
dc.identifier.issn 1864-5631
dc.identifier.uri http://hdl.handle.net/10251/40395
dc.description.abstract Glycerol carbonate esters (GCEs), which are valuable biomass-deriv. compds., have been prepd. through the direct esterification of glycerol carbonate and long org. acids with different chain lengths, in the absence of solvent, and with heterogeneous catalysts, including acidic-org. resins, zeolites, and hybrid org.-inorg. acids. The best results, in terms of activity and selectivity towards GCEs, were obtained using a Nafion-silica composite. A full reaction scheme has been established, and it has been demonstrated that an undesired competing reaction results in the generation of glycerol and esters derived from a secondary hydrolysis of the endocyclic ester group, which is attributed to water formed during the esterification reaction. The influence of temp., substrate ratio, catalyst-to-substrate ratio, and the use of solvent has been studied and, under optimized reaction conditions and with the adequate catalyst, it was possible to achieve 95 % selectivity for the desired product at 98 % conversion. It was demonstrated that the reaction rate decreased as the no. of carbon atoms in the linear alkyl chain of the carboxylic acid increased for both p-toluenesulfonic acid and Nafion-silica nanocomposite (Nafion SAC-13) catalysts. After fitting the exptl. data to a mechanistically based kinetic model, the reaction kinetic parameters for Nafion SAC-13 catalysis were detd. and compared for reactions involving different carboxylic acids. A kinetic study showed that the reduced reactivity of carboxylic acids with increasing chain lengths could be explained by inductive as well as steric effects. es_ES
dc.description.sponsorship The authors wish to acknowledge the Spanish Science and Innovation Ministry (Consolider Ingenio 2010, CTQ-2011-27550 and MULTICAT CSD2009-00050 projects) and the Generalitat Valenciana (Prometeo program) for their financial support. S.M. thanks the Ministerio de Educacion for a FPI fellowship. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof ChemSusChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biomass es_ES
dc.subject Carboxylic acids es_ES
dc.subject Esterification es_ES
dc.subject Heterogeneous catalysts es_ES
dc.subject Solid-state structures es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Preparation of Glycerol Carbonate Esters by using Hybrid Nafion-Silica Catalyst es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cssc.201300146
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2011-27550/ES/TRANSFORMACION CATALITICA DE BIOMASA EN DIESEL Y EN PRODUCTOS QUIMICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S.; Martínez Silvestre, S.; Velty ., A. (2013). Preparation of Glycerol Carbonate Esters by using Hybrid Nafion-Silica Catalyst. ChemSusChem. 6(7):1224-1234. doi:10.1002/cssc.201300146 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cssc.201300146 es_ES
dc.description.upvformatpinicio 1224 es_ES
dc.description.upvformatpfin 1234 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 246975
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Educación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references BUDRONI, G., & CORMA, A. (2008). Gold and gold–platinum as active and selective catalyst for biomass conversion: Synthesis of γ-butyrolactone and one-pot synthesis of pyrrolidone. Journal of Catalysis, 257(2), 403-408. doi:10.1016/j.jcat.2008.05.031 es_ES
dc.description.references Climent, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639d es_ES
dc.description.references Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d es_ES
dc.description.references Mäki‐Arvela, P., Holmbom, B., Salmi, T., & Murzin, D. Y. (2007). Recent Progress in Synthesis of Fine and Specialty Chemicals from Wood and Other Biomass by Heterogeneous Catalytic Processes. Catalysis Reviews, 49(3), 197-340. doi:10.1080/01614940701313127 es_ES
dc.description.references Arias, K. S., Al-Resayes, S. I., Climent, M. J., Corma, A., & Iborra, S. (2013). From Biomass to Chemicals: Synthesis of Precursors of Biodegradable Surfactants from 5-Hydroxymethylfurfural. ChemSusChem, 6(1), 123-131. doi:10.1002/cssc.201200513 es_ES
dc.description.references Biodiesel Production 2004 es_ES
dc.description.references Vicente, G., Martı́nez, M., & Aracil, J. (2004). Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology, 92(3), 297-305. doi:10.1016/j.biortech.2003.08.014 es_ES
dc.description.references Behr, A., Eilting, J., Irawadi, K., Leschinski, J., & Lindner, F. (2008). Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chem., 10(1), 13-30. doi:10.1039/b710561d es_ES
dc.description.references Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., & Della Pina, C. (2007). Von Glycerin zu höherwertigen Produkten. Angewandte Chemie, 119(24), 4516-4522. doi:10.1002/ange.200604694 es_ES
dc.description.references Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., & Della Pina, C. (2007). From Glycerol to Value-Added Products. Angewandte Chemie International Edition, 46(24), 4434-4440. doi:10.1002/anie.200604694 es_ES
dc.description.references Climent, M. J., Corma, A., De Frutos, P., Iborra, S., Noy, M., Velty, A., & Concepción, P. (2010). Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs. Journal of Catalysis, 269(1), 140-149. doi:10.1016/j.jcat.2009.11.001 es_ES
dc.description.references Schäffner, B., Schäffner, F., Verevkin, S. P., & Börner, A. (2010). Organic Carbonates as Solvents in Synthesis and Catalysis. Chemical Reviews, 110(8), 4554-4581. doi:10.1021/cr900393d es_ES
dc.description.references Sonnati, M. O., Amigoni, S., Taffin de Givenchy, E. P., Darmanin, T., Choulet, O., & Guittard, F. (2013). Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chem., 15(2), 283-306. doi:10.1039/c2gc36525a es_ES
dc.description.references Clements, J. H. (2003). Reactive Applications of Cyclic Alkylene Carbonates. Industrial & Engineering Chemistry Research, 42(4), 663-674. doi:10.1021/ie020678i es_ES
dc.description.references R. B. Raether BASF SE 2012 es_ES
dc.description.references Studies in Surface Science and Catalysis 2001 135 (Zeolites and Mesoporous Materials at the Dawn of the 21st Century) es_ES
dc.description.references Dibenedetto, A., Angelini, A., Aresta, M., Ethiraj, J., Fragale, C., & Nocito, F. (2011). Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes. Tetrahedron, 67(6), 1308-1313. doi:10.1016/j.tet.2010.11.070 es_ES
dc.description.references D. Balthasart 2010 es_ES
dc.description.references Mouloungui, Z., & Pelet, S. (2001). Study of the acyl transfer reaction: Structure and properties of glycerol carbonate esters. European Journal of Lipid Science and Technology, 103(4), 216-222. doi:10.1002/1438-9312(200104)103:4<216::aid-ejlt216>3.0.co;2-j es_ES
dc.description.references Shaikh, A.-A. G., & Sivaram, S. (1996). Organic Carbonates†. Chemical Reviews, 96(3), 951-976. doi:10.1021/cr950067i es_ES
dc.description.references HAMAGUCHI, S., YAMAMURA, H., HASEGAWA, J., & WATANABE, K. (1985). Biological resolution of racemic 2-oxazolidinones. Part IV. Enzymatic resolution of 2-oxazolidinone esters. Agricultural and Biological Chemistry, 49(5), 1509-1511. doi:10.1271/bbb1961.49.1509 es_ES
dc.description.references Oehlenschläger, J., & Gercken, G. (1978). Synthesis and mass spectrometry of 1-acyl and 3-acyl-sn-glycerol carbonates. Lipids, 13(8), 557-562. doi:10.1007/bf02533595 es_ES
dc.description.references Palaskar, D. V., Sane, P. S., & Wadgaonkar, P. P. (2010). A new ATRP initiator for synthesis of cyclic carbonate-terminated poly(methyl methacrylate). Reactive and Functional Polymers, 70(12), 931-937. doi:10.1016/j.reactfunctpolym.2010.08.005 es_ES
dc.description.references Katz, H. E. (1987). Preparation of soluble poly(carbonyldioxyglyceryl methacrylate). Macromolecules, 20(8), 2026-2027. doi:10.1021/ma00174a057 es_ES
dc.description.references Britz, J., Meyer, W. H., & Wegner, G. (2007). Blends of Poly(meth)acrylates with 2-Oxo-(1,3)dioxolane Side Chains and Lithium Salts as Lithium Ion Conductors. Macromolecules, 40(21), 7558-7565. doi:10.1021/ma0714619 es_ES
dc.description.references G. F. D′Alelio Scott Paper Co. 1965 es_ES
dc.description.references D’Alelio, G. F., & Huemmer, T. (1967). Preparation and polymerization of some vinyl monomers containing the 2-oxo-1,3-dioxolane group. Journal of Polymer Science Part A-1: Polymer Chemistry, 5(2), 307-321. doi:10.1002/pol.1967.150050208 es_ES
dc.description.references D. Grahe D. Lachowicz Dainippon Ink Chemical Industry Co. 1989 es_ES
dc.description.references J. J. Whelan R. J. Cotter 1963 es_ES
dc.description.references I. Frischinger J. Cotting J. Finter J. François 2003 es_ES
dc.description.references Ochiai, B., Ootani, Y., Maruyama, T., & Endo, T. (2007). Synthesis and properties of polymethacrylate bearing cyclic carbonate through urethane linkage. Journal of Polymer Science Part A: Polymer Chemistry, 45(24), 5781-5789. doi:10.1002/pola.22327 es_ES
dc.description.references J. C. Fang E. I. du Pont de Nemours & Co. 1961 es_ES
dc.description.references B. Schmitt M. Caspari 2008 es_ES
dc.description.references Ramaiah, M. (1985). A new convenient method for esterification using the Ph3P/CCl4 system. The Journal of Organic Chemistry, 50(24), 4991-4993. doi:10.1021/jo00224a076 es_ES
dc.description.references J. M. Renga F. D. Coms E. R. Humphreys Henkel Corp. 1993 es_ES
dc.description.references G. Brindoepke Hoechst A.-G., Fed. Rep. Ger. 1987 es_ES
dc.description.references Jana, S., Yu, H., Parthiban, A., & Chai, C. L. L. (2010). Controlled synthesis and functionalization of PEGylated methacrylates bearing cyclic carbonate pendant groups. Journal of Polymer Science Part A: Polymer Chemistry, 48(7), 1622-1632. doi:10.1002/pola.23928 es_ES
dc.description.references A. Lachowicz G. F. Grahe Dainippon Ink Chemical Industry Co. 1991 es_ES
dc.description.references Yadav, G. ., & Thathagar, M. . (2002). Esterification of maleic acid with ethanol over cation-exchange resin catalysts. Reactive and Functional Polymers, 52(2), 99-110. doi:10.1016/s1381-5148(02)00086-x es_ES
dc.description.references Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006 es_ES
dc.description.references Corma, A., Hamid, S. B. A., Iborra, S., & Velty, A. (2008). Surfactants from Biomass: A Two-Step Cascade Reaction for the Synthesis of Sorbitol Fatty Acid Esters Using Solid Acid Catalysts. ChemSusChem, 1(1-2), 85-90. doi:10.1002/cssc.200700109 es_ES
dc.description.references CHU, W., YANG, X., YE, X., & WU, Y. (1996). Vapor phase esterification catalyzed by immobilized dodecatungstosilicic acid (SiW12) on activated carbon. Applied Catalysis A: General, 145(1-2), 125-140. doi:10.1016/0926-860x(96)00109-3 es_ES
dc.description.references Sepúlveda, J. H., Yori, J. C., & Vera, C. R. (2005). Repeated use of supported H3PW12O40 catalysts in the liquid phase esterification of acetic acid with butanol. Applied Catalysis A: General, 288(1-2), 18-24. doi:10.1016/j.apcata.2005.03.038 es_ES
dc.description.references Jermy, B. R., & Pandurangan, A. (2005). Catalytic application of Al-MCM-41 in the esterification of acetic acid with various alcohols. Applied Catalysis A: General, 288(1-2), 25-33. doi:10.1016/j.apcata.2005.03.047 es_ES
dc.description.references Kirumakki, S. R., Nagaraju, N., Chary, K. V. R., & Narayanan, S. (2003). Kinetics of esterification of aromatic carboxylic acids over zeolites Hβ and HZSM5 using dimethyl carbonate. Applied Catalysis A: General, 248(1-2), 161-167. doi:10.1016/s0926-860x(03)00152-2 es_ES
dc.description.references Izumi, Y., & Urabe, K. (1981). CATALYSIS OF HETEROPOLY ACIDS ENTRAPPED IN ACTIVATED CARBON. Chemistry Letters, 10(5), 663-666. doi:10.1246/cl.1981.663 es_ES
dc.description.references Mauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123 es_ES
dc.description.references Harmer, M. A., Farneth, W. E., & Sun, Q. (1996). High Surface Area Nafion†Resin/Silica Nanocomposites:  A New Class of Solid Acid Catalyst. Journal of the American Chemical Society, 118(33), 7708-7715. doi:10.1021/ja9541950 es_ES
dc.description.references Harmer, M. A., Sun, Q., Vega, A. J., Farneth, W. E., Heidekum, A., & Hoelderich, W. F. (2000). Nafion resin–silica nanocomposite solid acid catalysts. Microstructure–processing–property correlations. Green Chemistry, 2(1), 7-14. doi:10.1039/a907892d es_ES
dc.description.references Harmer, M. A., & Sun, Q. (2001). Solid acid catalysis using ion-exchange resins. Applied Catalysis A: General, 221(1-2), 45-62. doi:10.1016/s0926-860x(01)00794-3 es_ES
dc.description.references Botella, P., Corma, A., & López-Nieto, J. M. (1999). The Influence of Textural and Compositional Characteristics of Nafion/Silica Composites on Isobutane/2-Butene Alkylation. Journal of Catalysis, 185(2), 371-377. doi:10.1006/jcat.1999.2502 es_ES
dc.description.references Heidekum, A., Harmer, M. A., & Hoelderich, W. F. (1999). Addition of Carboxylic Acids to Cyclic Olefins Catalyzed by Strong Acidic Ion-Exchange Resins. Journal of Catalysis, 181(2), 217-222. doi:10.1006/jcat.1998.2300 es_ES
dc.description.references Heidekum, A., Harmer, M. A., & Hoelderich, W. F. (1999). Nafion/Silica Composite Material Reveals High Catalytic Potential in Acylation Reactions. Journal of Catalysis, 188(1), 230-232. doi:10.1006/jcat.1999.2656 es_ES
dc.description.references Török, B., Kiricsi, I., Molnár, Á., & Olah, G. A. (2000). Acidity and Catalytic Activity of a Nafion-H/Silica Nanocomposite Catalyst Compared with a Silica-Supported Nafion Sample. Journal of Catalysis, 193(1), 132-138. doi:10.1006/jcat.2000.2869 es_ES
dc.description.references Laufer, M. (2003). Synthesis of 7-hydroxycoumarins by Pechmann reaction using Nafion resin/silica nanocomposites as catalysts. Journal of Catalysis, 218(2), 315-320. doi:10.1016/s0021-9517(03)00073-3 es_ES
dc.description.references Beltrame, P., & Zuretti, G. (2003). The reaction of naphthalene with benzyl alcohol over a Nafion-silica composite: a kinetic study. Applied Catalysis A: General, 248(1-2), 75-83. doi:10.1016/s0926-860x(03)00149-2 es_ES
dc.description.references Ledneczki, I., & Molnár, Á. (2004). Efficient and Selective Formation of Mixed Acetals by Nafion‐H SAC‐13 Silica Nanocomposite Solid Acid Catalyst. Synthetic Communications, 34(20), 3683-3690. doi:10.1081/scc-200032419 es_ES
dc.description.references Ledneczki, I., Darányi, M., Fülöp, F., & Molnár, Á. (2005). SAC-13 silica nanocomposite solid acid catalyst in organic synthesis. Catalysis Today, 100(3-4), 437-440. doi:10.1016/j.cattod.2004.09.076 es_ES
dc.description.references Chézeau, J.-M., Delmotte, L., Guth, J.-L., & Soulard, M. (1989). High-resolution solid-state 29Si and 13C n.m.r. on highly siliceous MFI-type zeolites synthesized in nonalkaline fluoride medium. Zeolites, 9(1), 78-80. doi:10.1016/0144-2449(89)90013-4 es_ES
dc.description.references Rönnback, R., Salmi, T., Vuori, A., Haario, H., Lehtonen, J., Sundqvist, A., & Tirronen, E. (1997). Development of a kinetic model for the esterification of acetic acid with methanol in the presence of a homogeneous acid catalyst. Chemical Engineering Science, 52(19), 3369-3381. doi:10.1016/s0009-2509(97)00139-5 es_ES
dc.description.references Fujimoto, H., Mizutani, Y., Endo, J., & Jinbu, Y. (1989). Theoretical study of substituent effects. Analysis of steric repulsion by means of paired interacting orbitals. The Journal of Organic Chemistry, 54(11), 2568-2573. doi:10.1021/jo00272a021 es_ES
dc.description.references Charton, M. (1975). Steric effects. I. Esterification and acid-catalyzed hydrolysis of esters. Journal of the American Chemical Society, 97(6), 1552-1556. doi:10.1021/ja00839a047 es_ES
dc.description.references LIU, Y., LOTERO, E., & GOODWINJR, J. (2006). Effect of carbon chain length on esterification of carboxylic acids with methanol using acid catalysis. Journal of Catalysis, 243(2), 221-228. doi:10.1016/j.jcat.2006.07.013 es_ES
dc.description.references Fujita, T., Takayama, C., & Nakajima, M. (1973). Nature and composition of Taft-Hancock steric constants. The Journal of Organic Chemistry, 38(9), 1623-1630. doi:10.1021/jo00949a001 es_ES
dc.description.references Datta, D., & Majumdar, D. (1991). Steric effects of alkyl groups: A ?cone angle? approach. Journal of Physical Organic Chemistry, 4(10), 611-617. doi:10.1002/poc.610041005 es_ES
dc.description.references Eder, F., Stockenhuber, M., & Lercher, J. A. (1997). Brønsted Acid Site and Pore Controlled Siting of Alkane Sorption in Acidic Molecular Sieves. The Journal of Physical Chemistry B, 101(27), 5414-5419. doi:10.1021/jp9706487 es_ES
dc.description.references Corma, A. (1997). Organic reactions catalyzed over solid acids. Catalysis Today, 38(3), 257-308. doi:10.1016/s0920-5861(97)81500-1 es_ES
dc.description.references Omota, F., Dimian, A. ., & Bliek, A. (2003). Fatty acid esterification by reactive distillation: Part 2—kinetics-based design for sulphated zirconia catalysts. Chemical Engineering Science, 58(14), 3175-3185. doi:10.1016/s0009-2509(03)00154-4 es_ES
dc.description.references Melián-Cabrera, I., Kapteijn, F., & Moulijn, J. A. (2006). Tooling up Heterogeneous Catalysis through Fenton’s Chemistry. Detemplation and functionalization of micro- And mesoporous materials. Scientific Bases for the Preparation of Heterogeneous Catalysts, 37-46. doi:10.1016/s0167-2991(06)80888-8 es_ES
dc.description.references Melián-Cabrera, I., Osman, A. H., van Eck, E. R. H., Kentgens, A. P. M., Polushkin, E., Kapteijn, F., & Moulijn, J. A. (2007). Fenton detemplation of ordered (meso)porous materials. Studies in Surface Science and Catalysis, 648-654. doi:10.1016/s0167-2991(07)80904-9 es_ES
dc.description.references Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910 es_ES
dc.description.references Corma, A., Corell, C., Llopis, F., Marti´nez, A., & Pe´rez-Pariente, J. (1994). Proposed pore volume topology of zeolite MCM-22 based on catalytic tests. Applied Catalysis A: General, 115(1), 121-134. doi:10.1016/0926-860x(94)80382-x es_ES
dc.description.references Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 es_ES
dc.description.references H. A. Goldsmith Colgate-Palmolive-Peet Co. 1953 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem