- -

Preparation of Glycerol Carbonate Esters by using Hybrid Nafion-Silica Catalyst

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preparation of Glycerol Carbonate Esters by using Hybrid Nafion-Silica Catalyst

Mostrar el registro completo del ítem

Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S.; Martínez Silvestre, S.; Velty ., A. (2013). Preparation of Glycerol Carbonate Esters by using Hybrid Nafion-Silica Catalyst. ChemSusChem. 6(7):1224-1234. doi:10.1002/cssc.201300146

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/40395

Ficheros en el ítem

Metadatos del ítem

Título: Preparation of Glycerol Carbonate Esters by using Hybrid Nafion-Silica Catalyst
Autor: Climent Olmedo, María José Corma Canós, Avelino Iborra Chornet, Sara Martínez Silvestre, Sergio Velty ., Alexandra
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
Glycerol carbonate esters (GCEs), which are valuable biomass-deriv. compds., have been prepd. through the direct esterification of glycerol carbonate and long org. acids with different chain lengths, in the absence of ...[+]
Palabras clave: Biomass , Carboxylic acids , Esterification , Heterogeneous catalysts , Solid-state structures
Derechos de uso: Reserva de todos los derechos
Fuente:
ChemSusChem. (issn: 1864-5631 )
DOI: 10.1002/cssc.201300146
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/cssc.201300146
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/
info:eu-repo/grantAgreement/MICINN//CTQ2011-27550/ES/TRANSFORMACION CATALITICA DE BIOMASA EN DIESEL Y EN PRODUCTOS QUIMICOS/
Agradecimientos:
The authors wish to acknowledge the Spanish Science and Innovation Ministry (Consolider Ingenio 2010, CTQ-2011-27550 and MULTICAT CSD2009-00050 projects) and the Generalitat Valenciana (Prometeo program) for their financial ...[+]
Tipo: Artículo

References

BUDRONI, G., & CORMA, A. (2008). Gold and gold–platinum as active and selective catalyst for biomass conversion: Synthesis of γ-butyrolactone and one-pot synthesis of pyrrolidone. Journal of Catalysis, 257(2), 403-408. doi:10.1016/j.jcat.2008.05.031

Climent, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639d

Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d [+]
BUDRONI, G., & CORMA, A. (2008). Gold and gold–platinum as active and selective catalyst for biomass conversion: Synthesis of γ-butyrolactone and one-pot synthesis of pyrrolidone. Journal of Catalysis, 257(2), 403-408. doi:10.1016/j.jcat.2008.05.031

Climent, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639d

Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d

Mäki‐Arvela, P., Holmbom, B., Salmi, T., & Murzin, D. Y. (2007). Recent Progress in Synthesis of Fine and Specialty Chemicals from Wood and Other Biomass by Heterogeneous Catalytic Processes. Catalysis Reviews, 49(3), 197-340. doi:10.1080/01614940701313127

Arias, K. S., Al-Resayes, S. I., Climent, M. J., Corma, A., & Iborra, S. (2013). From Biomass to Chemicals: Synthesis of Precursors of Biodegradable Surfactants from 5-Hydroxymethylfurfural. ChemSusChem, 6(1), 123-131. doi:10.1002/cssc.201200513

Biodiesel Production 2004

Vicente, G., Martı́nez, M., & Aracil, J. (2004). Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology, 92(3), 297-305. doi:10.1016/j.biortech.2003.08.014

Behr, A., Eilting, J., Irawadi, K., Leschinski, J., & Lindner, F. (2008). Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chem., 10(1), 13-30. doi:10.1039/b710561d

Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., & Della Pina, C. (2007). Von Glycerin zu höherwertigen Produkten. Angewandte Chemie, 119(24), 4516-4522. doi:10.1002/ange.200604694

Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., & Della Pina, C. (2007). From Glycerol to Value-Added Products. Angewandte Chemie International Edition, 46(24), 4434-4440. doi:10.1002/anie.200604694

Climent, M. J., Corma, A., De Frutos, P., Iborra, S., Noy, M., Velty, A., & Concepción, P. (2010). Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs. Journal of Catalysis, 269(1), 140-149. doi:10.1016/j.jcat.2009.11.001

Schäffner, B., Schäffner, F., Verevkin, S. P., & Börner, A. (2010). Organic Carbonates as Solvents in Synthesis and Catalysis. Chemical Reviews, 110(8), 4554-4581. doi:10.1021/cr900393d

Sonnati, M. O., Amigoni, S., Taffin de Givenchy, E. P., Darmanin, T., Choulet, O., & Guittard, F. (2013). Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chem., 15(2), 283-306. doi:10.1039/c2gc36525a

Clements, J. H. (2003). Reactive Applications of Cyclic Alkylene Carbonates. Industrial & Engineering Chemistry Research, 42(4), 663-674. doi:10.1021/ie020678i

R. B. Raether BASF SE 2012

Studies in Surface Science and Catalysis 2001 135 (Zeolites and Mesoporous Materials at the Dawn of the 21st Century)

Dibenedetto, A., Angelini, A., Aresta, M., Ethiraj, J., Fragale, C., & Nocito, F. (2011). Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes. Tetrahedron, 67(6), 1308-1313. doi:10.1016/j.tet.2010.11.070

D. Balthasart 2010

Mouloungui, Z., & Pelet, S. (2001). Study of the acyl transfer reaction: Structure and properties of glycerol carbonate esters. European Journal of Lipid Science and Technology, 103(4), 216-222. doi:10.1002/1438-9312(200104)103:4<216::aid-ejlt216>3.0.co;2-j

Shaikh, A.-A. G., & Sivaram, S. (1996). Organic Carbonates†. Chemical Reviews, 96(3), 951-976. doi:10.1021/cr950067i

HAMAGUCHI, S., YAMAMURA, H., HASEGAWA, J., & WATANABE, K. (1985). Biological resolution of racemic 2-oxazolidinones. Part IV. Enzymatic resolution of 2-oxazolidinone esters. Agricultural and Biological Chemistry, 49(5), 1509-1511. doi:10.1271/bbb1961.49.1509

Oehlenschläger, J., & Gercken, G. (1978). Synthesis and mass spectrometry of 1-acyl and 3-acyl-sn-glycerol carbonates. Lipids, 13(8), 557-562. doi:10.1007/bf02533595

Palaskar, D. V., Sane, P. S., & Wadgaonkar, P. P. (2010). A new ATRP initiator for synthesis of cyclic carbonate-terminated poly(methyl methacrylate). Reactive and Functional Polymers, 70(12), 931-937. doi:10.1016/j.reactfunctpolym.2010.08.005

Katz, H. E. (1987). Preparation of soluble poly(carbonyldioxyglyceryl methacrylate). Macromolecules, 20(8), 2026-2027. doi:10.1021/ma00174a057

Britz, J., Meyer, W. H., & Wegner, G. (2007). Blends of Poly(meth)acrylates with 2-Oxo-(1,3)dioxolane Side Chains and Lithium Salts as Lithium Ion Conductors. Macromolecules, 40(21), 7558-7565. doi:10.1021/ma0714619

G. F. D′Alelio Scott Paper Co. 1965

D’Alelio, G. F., & Huemmer, T. (1967). Preparation and polymerization of some vinyl monomers containing the 2-oxo-1,3-dioxolane group. Journal of Polymer Science Part A-1: Polymer Chemistry, 5(2), 307-321. doi:10.1002/pol.1967.150050208

D. Grahe D. Lachowicz Dainippon Ink Chemical Industry Co. 1989

J. J. Whelan R. J. Cotter 1963

I. Frischinger J. Cotting J. Finter J. François 2003

Ochiai, B., Ootani, Y., Maruyama, T., & Endo, T. (2007). Synthesis and properties of polymethacrylate bearing cyclic carbonate through urethane linkage. Journal of Polymer Science Part A: Polymer Chemistry, 45(24), 5781-5789. doi:10.1002/pola.22327

J. C. Fang E. I. du Pont de Nemours & Co. 1961

B. Schmitt M. Caspari 2008

Ramaiah, M. (1985). A new convenient method for esterification using the Ph3P/CCl4 system. The Journal of Organic Chemistry, 50(24), 4991-4993. doi:10.1021/jo00224a076

J. M. Renga F. D. Coms E. R. Humphreys Henkel Corp. 1993

G. Brindoepke Hoechst A.-G., Fed. Rep. Ger. 1987

Jana, S., Yu, H., Parthiban, A., & Chai, C. L. L. (2010). Controlled synthesis and functionalization of PEGylated methacrylates bearing cyclic carbonate pendant groups. Journal of Polymer Science Part A: Polymer Chemistry, 48(7), 1622-1632. doi:10.1002/pola.23928

A. Lachowicz G. F. Grahe Dainippon Ink Chemical Industry Co. 1991

Yadav, G. ., & Thathagar, M. . (2002). Esterification of maleic acid with ethanol over cation-exchange resin catalysts. Reactive and Functional Polymers, 52(2), 99-110. doi:10.1016/s1381-5148(02)00086-x

Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006

Corma, A., Hamid, S. B. A., Iborra, S., & Velty, A. (2008). Surfactants from Biomass: A Two-Step Cascade Reaction for the Synthesis of Sorbitol Fatty Acid Esters Using Solid Acid Catalysts. ChemSusChem, 1(1-2), 85-90. doi:10.1002/cssc.200700109

CHU, W., YANG, X., YE, X., & WU, Y. (1996). Vapor phase esterification catalyzed by immobilized dodecatungstosilicic acid (SiW12) on activated carbon. Applied Catalysis A: General, 145(1-2), 125-140. doi:10.1016/0926-860x(96)00109-3

Sepúlveda, J. H., Yori, J. C., & Vera, C. R. (2005). Repeated use of supported H3PW12O40 catalysts in the liquid phase esterification of acetic acid with butanol. Applied Catalysis A: General, 288(1-2), 18-24. doi:10.1016/j.apcata.2005.03.038

Jermy, B. R., & Pandurangan, A. (2005). Catalytic application of Al-MCM-41 in the esterification of acetic acid with various alcohols. Applied Catalysis A: General, 288(1-2), 25-33. doi:10.1016/j.apcata.2005.03.047

Kirumakki, S. R., Nagaraju, N., Chary, K. V. R., & Narayanan, S. (2003). Kinetics of esterification of aromatic carboxylic acids over zeolites Hβ and HZSM5 using dimethyl carbonate. Applied Catalysis A: General, 248(1-2), 161-167. doi:10.1016/s0926-860x(03)00152-2

Izumi, Y., & Urabe, K. (1981). CATALYSIS OF HETEROPOLY ACIDS ENTRAPPED IN ACTIVATED CARBON. Chemistry Letters, 10(5), 663-666. doi:10.1246/cl.1981.663

Mauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123

Harmer, M. A., Farneth, W. E., & Sun, Q. (1996). High Surface Area Nafion†Resin/Silica Nanocomposites:  A New Class of Solid Acid Catalyst. Journal of the American Chemical Society, 118(33), 7708-7715. doi:10.1021/ja9541950

Harmer, M. A., Sun, Q., Vega, A. J., Farneth, W. E., Heidekum, A., & Hoelderich, W. F. (2000). Nafion resin–silica nanocomposite solid acid catalysts. Microstructure–processing–property correlations. Green Chemistry, 2(1), 7-14. doi:10.1039/a907892d

Harmer, M. A., & Sun, Q. (2001). Solid acid catalysis using ion-exchange resins. Applied Catalysis A: General, 221(1-2), 45-62. doi:10.1016/s0926-860x(01)00794-3

Botella, P., Corma, A., & López-Nieto, J. M. (1999). The Influence of Textural and Compositional Characteristics of Nafion/Silica Composites on Isobutane/2-Butene Alkylation. Journal of Catalysis, 185(2), 371-377. doi:10.1006/jcat.1999.2502

Heidekum, A., Harmer, M. A., & Hoelderich, W. F. (1999). Addition of Carboxylic Acids to Cyclic Olefins Catalyzed by Strong Acidic Ion-Exchange Resins. Journal of Catalysis, 181(2), 217-222. doi:10.1006/jcat.1998.2300

Heidekum, A., Harmer, M. A., & Hoelderich, W. F. (1999). Nafion/Silica Composite Material Reveals High Catalytic Potential in Acylation Reactions. Journal of Catalysis, 188(1), 230-232. doi:10.1006/jcat.1999.2656

Török, B., Kiricsi, I., Molnár, Á., & Olah, G. A. (2000). Acidity and Catalytic Activity of a Nafion-H/Silica Nanocomposite Catalyst Compared with a Silica-Supported Nafion Sample. Journal of Catalysis, 193(1), 132-138. doi:10.1006/jcat.2000.2869

Laufer, M. (2003). Synthesis of 7-hydroxycoumarins by Pechmann reaction using Nafion resin/silica nanocomposites as catalysts. Journal of Catalysis, 218(2), 315-320. doi:10.1016/s0021-9517(03)00073-3

Beltrame, P., & Zuretti, G. (2003). The reaction of naphthalene with benzyl alcohol over a Nafion-silica composite: a kinetic study. Applied Catalysis A: General, 248(1-2), 75-83. doi:10.1016/s0926-860x(03)00149-2

Ledneczki, I., & Molnár, Á. (2004). Efficient and Selective Formation of Mixed Acetals by Nafion‐H SAC‐13 Silica Nanocomposite Solid Acid Catalyst. Synthetic Communications, 34(20), 3683-3690. doi:10.1081/scc-200032419

Ledneczki, I., Darányi, M., Fülöp, F., & Molnár, Á. (2005). SAC-13 silica nanocomposite solid acid catalyst in organic synthesis. Catalysis Today, 100(3-4), 437-440. doi:10.1016/j.cattod.2004.09.076

Chézeau, J.-M., Delmotte, L., Guth, J.-L., & Soulard, M. (1989). High-resolution solid-state 29Si and 13C n.m.r. on highly siliceous MFI-type zeolites synthesized in nonalkaline fluoride medium. Zeolites, 9(1), 78-80. doi:10.1016/0144-2449(89)90013-4

Rönnback, R., Salmi, T., Vuori, A., Haario, H., Lehtonen, J., Sundqvist, A., & Tirronen, E. (1997). Development of a kinetic model for the esterification of acetic acid with methanol in the presence of a homogeneous acid catalyst. Chemical Engineering Science, 52(19), 3369-3381. doi:10.1016/s0009-2509(97)00139-5

Fujimoto, H., Mizutani, Y., Endo, J., & Jinbu, Y. (1989). Theoretical study of substituent effects. Analysis of steric repulsion by means of paired interacting orbitals. The Journal of Organic Chemistry, 54(11), 2568-2573. doi:10.1021/jo00272a021

Charton, M. (1975). Steric effects. I. Esterification and acid-catalyzed hydrolysis of esters. Journal of the American Chemical Society, 97(6), 1552-1556. doi:10.1021/ja00839a047

LIU, Y., LOTERO, E., & GOODWINJR, J. (2006). Effect of carbon chain length on esterification of carboxylic acids with methanol using acid catalysis. Journal of Catalysis, 243(2), 221-228. doi:10.1016/j.jcat.2006.07.013

Fujita, T., Takayama, C., & Nakajima, M. (1973). Nature and composition of Taft-Hancock steric constants. The Journal of Organic Chemistry, 38(9), 1623-1630. doi:10.1021/jo00949a001

Datta, D., & Majumdar, D. (1991). Steric effects of alkyl groups: A ?cone angle? approach. Journal of Physical Organic Chemistry, 4(10), 611-617. doi:10.1002/poc.610041005

Eder, F., Stockenhuber, M., & Lercher, J. A. (1997). Brønsted Acid Site and Pore Controlled Siting of Alkane Sorption in Acidic Molecular Sieves. The Journal of Physical Chemistry B, 101(27), 5414-5419. doi:10.1021/jp9706487

Corma, A. (1997). Organic reactions catalyzed over solid acids. Catalysis Today, 38(3), 257-308. doi:10.1016/s0920-5861(97)81500-1

Omota, F., Dimian, A. ., & Bliek, A. (2003). Fatty acid esterification by reactive distillation: Part 2—kinetics-based design for sulphated zirconia catalysts. Chemical Engineering Science, 58(14), 3175-3185. doi:10.1016/s0009-2509(03)00154-4

Melián-Cabrera, I., Kapteijn, F., & Moulijn, J. A. (2006). Tooling up Heterogeneous Catalysis through Fenton’s Chemistry. Detemplation and functionalization of micro- And mesoporous materials. Scientific Bases for the Preparation of Heterogeneous Catalysts, 37-46. doi:10.1016/s0167-2991(06)80888-8

Melián-Cabrera, I., Osman, A. H., van Eck, E. R. H., Kentgens, A. P. M., Polushkin, E., Kapteijn, F., & Moulijn, J. A. (2007). Fenton detemplation of ordered (meso)porous materials. Studies in Surface Science and Catalysis, 648-654. doi:10.1016/s0167-2991(07)80904-9

Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910

Corma, A., Corell, C., Llopis, F., Marti´nez, A., & Pe´rez-Pariente, J. (1994). Proposed pore volume topology of zeolite MCM-22 based on catalytic tests. Applied Catalysis A: General, 115(1), 121-134. doi:10.1016/0926-860x(94)80382-x

Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592

H. A. Goldsmith Colgate-Palmolive-Peet Co. 1953

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem