- -

Excitation power dependence of the Purcell effect in photonic crystalmicrocavity lasers with quantum wires

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Excitation power dependence of the Purcell effect in photonic crystalmicrocavity lasers with quantum wires

Mostrar el registro completo del ítem

Canet-Ferrer, J.; Prieto, I.; Muñoz Matutano, G.; Martínez, L.; Muñoz-Camuniez, L.; Llorens, J.; Fuster, D.... (2013). Excitation power dependence of the Purcell effect in photonic crystalmicrocavity lasers with quantum wires. Applied Physics Letters. 102(20). https://doi.org/10.1063/1.4807439

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/40405

Ficheros en el ítem

Metadatos del ítem

Título: Excitation power dependence of the Purcell effect in photonic crystalmicrocavity lasers with quantum wires
Autor: Canet-Ferrer, J. Prieto, I. Muñoz Matutano, Guillermo Martínez, L.J. Muñoz-Camuniez, L.E. Llorens, J.M.. Fuster, D. Alén, B. González, Y. González, L. Postigo, P.A. Martínez-Pastor, J.P.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] The Purcell effect dependence on the excitation power is studied in photonic crystal microcavity lasers embedding InAs/InP quantum wires. In the case of non-lasing modes, the Purcell effect has low dependence on the ...[+]
Palabras clave: Continuous-Wave Operation , Room-Temperature , Spontaneous Emission , Microdisk Lasers , Dot , Nanocavity
Derechos de uso: Reserva de todos los derechos
Fuente:
Applied Physics Letters. (issn: 0003-6951 )
DOI: 10.1063/1.4807439
Editorial:
American Institute of Physics (AIP)
Versión del editor: http://dx.doi.org/10.1063/1.4807439
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TEC2008-06756-C03-01/ES/NANOESTRUCTURAS PARA DISPOSITIVOS FOTONICOS CUANTICOS INTEGRADOS/
info:eu-repo/grantAgreement/MICINN//TEC2011-29045-C04-03/ES/NANOESTRUCTURAS DE CRISTAL FOTONICO PARA DIODOS EMISORES DE LUZ BASADOS EN SILICIO/
info:eu-repo/grantAgreement/MEC//BES-2006-12300/ES/BES-2006-12300/
info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-01/04/
info:eu-repo/grantAgreement/CAM// S2009ESP-1503/
Agradecimientos:
We want to acknowledge financial support from the Spanish MICINN through grants (Nos. S-0505-TIC-0191, TEC2008-06756-C03-01/-03, TEC2011-29045-C04-03, TEC2011-29120-C05-01/04, and CAM S2009ESP-1503). J.C.-F. thanks the ...[+]
Tipo: Artículo

References

Gérard, J., Sermage, B., Gayral, B., Legrand, B., Costard, E., & Thierry-Mieg, V. (1998). Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity. Physical Review Letters, 81(5), 1110-1113. doi:10.1103/physrevlett.81.1110

Englund, D., Fattal, D., Waks, E., Solomon, G., Zhang, B., Nakaoka, T., … Vučković, J. (2005). Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal. Physical Review Letters, 95(1). doi:10.1103/physrevlett.95.013904

Munsch, M., Mosset, A., Auffèves, A., Seidelin, S., Poizat, J. P., Gérard, J.-M., … Senellart, P. (2009). Continuous-wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities. Physical Review B, 80(11). doi:10.1103/physrevb.80.115312 [+]
Gérard, J., Sermage, B., Gayral, B., Legrand, B., Costard, E., & Thierry-Mieg, V. (1998). Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity. Physical Review Letters, 81(5), 1110-1113. doi:10.1103/physrevlett.81.1110

Englund, D., Fattal, D., Waks, E., Solomon, G., Zhang, B., Nakaoka, T., … Vučković, J. (2005). Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal. Physical Review Letters, 95(1). doi:10.1103/physrevlett.95.013904

Munsch, M., Mosset, A., Auffèves, A., Seidelin, S., Poizat, J. P., Gérard, J.-M., … Senellart, P. (2009). Continuous-wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities. Physical Review B, 80(11). doi:10.1103/physrevb.80.115312

Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H. M., Rupper, G., … Deppe, D. G. (2004). Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432(7014), 200-203. doi:10.1038/nature03119

Badolato, A. (2005). Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes. Science, 308(5725), 1158-1161. doi:10.1126/science.1109815

Hennessy, K., Badolato, A., Winger, M., Gerace, D., Atatüre, M., Gulde, S., … Imamoğlu, A. (2007). Quantum nature of a strongly coupled single quantum dot–cavity system. Nature, 445(7130), 896-899. doi:10.1038/nature05586

Strauf, S. (2010). Towards efficient quantum sources. Nature Photonics, 4(3), 132-134. doi:10.1038/nphoton.2010.11

Altug, H., Englund, D., & Vučković, J. (2006). Ultrafast photonic crystal nanocavity laser. Nature Physics, 2(7), 484-488. doi:10.1038/nphys343

Azzini, S., Gerace, D., Galli, M., Sagnes, I., Braive, R., Lemaître, A., … Bajoni, D. (2011). Ultra-low threshold polariton lasing in photonic crystal cavities. Applied Physics Letters, 99(11), 111106. doi:10.1063/1.3638469

Nozaki, K., Kita, S., & Baba, T. (2007). Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Optics Express, 15(12), 7506. doi:10.1364/oe.15.007506

Strauf, S., Hennessy, K., Rakher, M. T., Choi, Y.-S., Badolato, A., Andreani, L. C., … Bouwmeester, D. (2006). Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers. Physical Review Letters, 96(12). doi:10.1103/physrevlett.96.127404

Kippenberg, T. J., Spillane, S. M., & Vahala, K. J. (2004). Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Applied Physics Letters, 85(25), 6113-6115. doi:10.1063/1.1833556

Arakawa, Y., & Sakaki, H. (1982). Multidimensional quantum well laser and temperature dependence of its threshold current. Applied Physics Letters, 40(11), 939-941. doi:10.1063/1.92959

Kapon, E. (1992). Quantum wire lasers. Proceedings of the IEEE, 80(3), 398-410. doi:10.1109/5.135356

Canet-Ferrer, J., Munoz-Matutano, G., Fuster, D., Alen, B., Gonzalez, Y., Gonzalez, L., & Martinez-Pastor, J. P. (2011). Localization effects on recombination dynamics in InAs/InP self-assembled quantum wires emitting at 1.5 μm. Journal of Applied Physics, 110(10), 103502. doi:10.1063/1.3660260

Alén, B., Martı́nez-Pastor, J., Garcı́a-Cristobal, A., González, L., & Garcı́a, J. M. (2001). Optical transitions and excitonic recombination in InAs/InP self-assembled quantum wires. Applied Physics Letters, 78(25), 4025-4027. doi:10.1063/1.1379991

Cao, M., Daste, P., Miyamoto, Y., Miyake, Y., Nogiwa, S., Arai, S., … Suematsu, Y. (1988). GaInAsP/InP single-quantum-well (SQW) laser with wire-like active region towards quantum wire laser. Electronics Letters, 24(13), 824. doi:10.1049/el:19880561

Atlasov, K. A., Calic, M., Karlsson, K. F., Gallo, P., Rudra, A., Dwir, B., & Kapon, E. (2009). Photonic-crystal microcavity laser with site-controlled quantum-wire active medium. Optics Express, 17(20), 18178. doi:10.1364/oe.17.018178

Martinez, L. J., Alén, B., Prieto, I., Fuster, D., González, L., González, Y., … Postigo, P. A. (2009). Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires. Optics Express, 17(17), 14993. doi:10.1364/oe.17.014993

Mao, M.-H., & Chien, H.-C. (2012). Transient behaviors of current-injection quantum-dot microdisk lasers. Optics Express, 20(3), 3302. doi:10.1364/oe.20.003302

Gregersen, N., Suhr, T., Lorke, M., & Mørk, J. (2012). Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission. Applied Physics Letters, 100(13), 131107. doi:10.1063/1.3697702

Kim, S.-H., Kim, G.-H., Kim, S.-K., Park, H.-G., Lee, Y.-H., & Kim, S.-B. (2004). Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab. Journal of Applied Physics, 95(2), 411-416. doi:10.1063/1.1633645

Martínez, L. J., Prieto, I., Alén, B., & Postigo, P. A. (2009). Fabrication of high quality factor photonic crystal microcavities in InAsP∕InP membranes combining reactive ion beam etching and reactive ion etching. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 27(4), 1801. doi:10.1116/1.3151832

Canet-Ferrer, J., Martínez, L. J., Prieto, I., Alén, B., Muñoz-Matutano, G., Fuster, D., … Martínez-Pastor, J. P. (2012). Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires. Optics Express, 20(7), 7901. doi:10.1364/oe.20.007901

Alén, B., Fuster, D., Muñoz-Matutano, G., Martínez-Pastor, J., González, Y., Canet-Ferrer, J., & González, L. (2008). Exciton Gas Compression and Metallic Condensation in a Single Semiconductor Quantum Wire. Physical Review Letters, 101(6). doi:10.1103/physrevlett.101.067405

Baba, T., & Sano, D. (2003). Low-threshold lasing and purcell effect in microdisk lasers at room temperature. IEEE Journal of Selected Topics in Quantum Electronics, 9(5), 1340-1346. doi:10.1109/jstqe.2003.819464

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem