- -

Fibronectin fixation on poly(ethyl acrylate)-based copolymer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fibronectin fixation on poly(ethyl acrylate)-based copolymer

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Briz, N. es_ES
dc.contributor.author Antolinos Turpín, Carmen María es_ES
dc.contributor.author Alio, J. es_ES
dc.contributor.author Garagorri, N. es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Gómez-Tejedor, José Antonio es_ES
dc.date.accessioned 2014-10-02T09:04:24Z
dc.date.available 2014-10-02T09:04:24Z
dc.date.issued 2013-08
dc.identifier.issn 1552-4973
dc.identifier.uri http://hdl.handle.net/10251/40578
dc.description.abstract The aim of this paper is to quantify the adhered fibronectin (FN; by adsorption and/or grafting) and the exposure of its cell adhesive motifs (RGD and FNIII7-10) on poly(ethyl acrylate) (PEA) copolymers whose chemical composition has been designed to increase wettability and to introduce acid functional groups. FN was adsorbed to PEA, poly(ethyl acrylate-co-hydroxyethyl acrylate), poly(ethyl acrylate-co-acrylic acid), and poly(ethyl acrylate-co-methacrylic acid) copolymers, and covalently cross-linked to poly(ethyl acrylate-co-acrylic acid) and poly(ethyl acrylate-co-methacrylic acid) copolymers. Amount of adhered FN and exhibition of RGD and FNIII7-10 fragments involved in cell adhesion were quantified with enzyme-linked immunosorbent assay tests. Even copolymers with a lower content of the hydrophilic component showed a decrease in water contact angle. In addition, FN was successfully fixed on all surfaces, especially on the hydrophobic surfaces. However, it was demonstrated that exposure of its cell adhesion sequences, which is the key factor in cell adhesion and proliferation, was higher for hydrophilic surfaces. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013. es_ES
dc.description.sponsorship Contract grant sponsors: Centre for Industrial Technological Development (CDTI) of Ministry of Economy and Competitiveness, Project Customized Eye Care-Oftalmologia personalizada _CEYEC CENIT-Sol 00028336 SFPECEPP and Health Institute Carlos III through the CIBER- BBN (Bioingenieria, Biomateriales y Nanomedicina); CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Journal of Biomedical Materials Research Part B: Applied Biomaterials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Acrylic acid es_ES
dc.subject Fibronectin adsorption es_ES
dc.subject Grafting es_ES
dc.subject Hydroxyethyl acrylate es_ES
dc.subject Methacrylic acid es_ES
dc.subject Poly(ethyl acrylate) es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Fibronectin fixation on poly(ethyl acrylate)-based copolymer es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/jbm.b.32907
dc.relation.projectID info:eu-repo/grantAgreement/CIBER-BBN//00028336 SFPECEPP/ES/Customized Eye Care-Oftalmologia personalizada/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.description.bibliographicCitation Briz, N.; Antolinos Turpín, CM.; Alio, J.; Garagorri, N.; Gómez Ribelles, JL.; Gómez-Tejedor, JA. (2013). Fibronectin fixation on poly(ethyl acrylate)-based copolymer. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 101B(6):991-997. https://doi.org/10.1002/jbm.b.32907 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/jbm.b.32907 es_ES
dc.description.upvformatpinicio 991 es_ES
dc.description.upvformatpfin 997 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 101B es_ES
dc.description.issue 6 es_ES
dc.relation.senia 251553
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.contributor.funder Centro para el Desarrollo Tecnológico Industrial es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Roach, P., Eglin, D., Rohde, K., & Perry, C. C. (2007). Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 18(7), 1263-1277. doi:10.1007/s10856-006-0064-3 es_ES
dc.description.references Schmidt, D. R., Waldeck, H., & Kao, W. J. (2009). Protein Adsorption to Biomaterials. Biological Interactions on Materials Surfaces, 1-18. doi:10.1007/978-0-387-98161-1_1 es_ES
dc.description.references Ertel, S. I., Ratner, B. D., & Horbett, T. A. (1990). Radiofrequency plasma deposition of oxygen-containing films on polystyrene and poly(ethylene terephthalate) substrates improves endothelial cell growth. Journal of Biomedical Materials Research, 24(12), 1637-1659. doi:10.1002/jbm.820241207 es_ES
dc.description.references Way, T.-D., Hsieh, S.-R., Chang, C.-J., Hung, T.-W., & Chiu, C.-H. (2010). Preparation and characterization of branched polymers as postoperative anti-adhesion barriers. Applied Surface Science, 256(10), 3330-3336. doi:10.1016/j.apsusc.2009.12.029 es_ES
dc.description.references Hsieh, S.-R., Chang, C.-J., Way, T.-D., Kwan, P.-C., & Hung, T.-W. (2009). Preparation and Non-Invasive In-Vivo Imaging of Anti-Adhesion Barriers with Fluorescent Polymeric Marks. Journal of Fluorescence, 19(4), 733-740. doi:10.1007/s10895-009-0469-8 es_ES
dc.description.references Lee, M. H., Ducheyne, P., Lynch, L., Boettiger, D., & Composto, R. J. (2006). Effect of biomaterial surface properties on fibronectin–α5β1 integrin interaction and cellular attachment. Biomaterials, 27(9), 1907-1916. doi:10.1016/j.biomaterials.2005.11.003 es_ES
dc.description.references Keselowsky, B. G., Collard, D. M., & Garcı́a, A. J. (2004). Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials, 25(28), 5947-5954. doi:10.1016/j.biomaterials.2004.01.062 es_ES
dc.description.references Tzoneva, R., Faucheux, N., & Groth, T. (2007). Wettability of substrata controls cell–substrate and cell–cell adhesions. Biochimica et Biophysica Acta (BBA) - General Subjects, 1770(11), 1538-1547. doi:10.1016/j.bbagen.2007.07.008 es_ES
dc.description.references Rico, P., Hernández, J. C. R., Moratal, D., Altankov, G., Pradas, M. M., & Salmerón-Sánchez, M. (2009). Substrate-Induced Assembly of Fibronectin into Networks: Influence of Surface Chemistry and Effect on Osteoblast Adhesion. Tissue Engineering Part A, 15(11), 3271-3281. doi:10.1089/ten.tea.2009.0141 es_ES
dc.description.references Gugutkov, D., Altankov, G., Rodríguez Hernández, J. C., Monleón Pradas, M., & Salmerón Sánchez, M. (2010). Fibronectin activity on substrates with controlled OH density. Journal of Biomedical Materials Research Part A, 92A(1), 322-331. doi:10.1002/jbm.a.32374 es_ES
dc.description.references Salmerón-Sánchez, M., Rico, P., Moratal, D., Lee, T. T., Schwarzbauer, J. E., & García, A. J. (2011). Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials, 32(8), 2099-2105. doi:10.1016/j.biomaterials.2010.11.057 es_ES
dc.description.references Pérez Olmedilla, M., Garcia-Giralt, N., Pradas, M. M., Ruiz, P. B., Gómez Ribelles, J. L., Palou, E. C., & García, J. C. M. (2006). Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials, 27(7), 1003-1012. doi:10.1016/j.biomaterials.2005.07.030 es_ES
dc.description.references Soria, J. M., Martínez Ramos, C., Salmerón Sánchez, M., Benavent, V., Campillo Fernández, A., Gómez Ribelles, J. L., … Barcia, J. A. (2006). Survival and differentiation of embryonic neural explants on different biomaterials. Journal of Biomedical Materials Research Part A, 79A(3), 495-502. doi:10.1002/jbm.a.30803 es_ES
dc.description.references Campillo-Fernandez, A. J., Pastor, S., Abad-Collado, M., Bataille, L., Gomez-Ribelles, J. L., Meseguer-Dueñas, J. M., … Ruiz-Moreno, J. M. (2007). Future Design of a New Keratoprosthesis. Physical and Biological Analysis of Polymeric Substrates for Epithelial Cell Growth. Biomacromolecules, 8(8), 2429-2436. doi:10.1021/bm0703012 es_ES
dc.description.references Campillo-Fernández, A. J., Unger, R. E., Peters, K., Halstenberg, S., Santos, M., Sánchez, M. S., … Kirkpatrick, C. J. (2009). Analysis of the Biological Response of Endothelial and Fibroblast Cells Cultured on Synthetic Scaffolds with Various Hydrophilic/Hydrophobic Ratios: Influence of Fibronectin Adsorption and Conformation. Tissue Engineering Part A, 15(6), 1331-1341. doi:10.1089/ten.tea.2008.0146 es_ES
dc.description.references Cutler, S. (2003). Engineering cell adhesive surfaces that direct integrin α5β1 binding using a recombinant fragment of fibronectin. Biomaterials, 24(10), 1759-1770. doi:10.1016/s0142-9612(02)00570-7 es_ES
dc.description.references Salmerón Sánchez, M., Brı́gido Diego, R., Iannazzo, S. A. ., Gómez Ribelles, J. L., & Monleón Pradas, M. (2004). The structure of poly(ethyl acrylate-co-hydroxyethyl methacrylate) copolymer networks by segmental dynamics studies based on structural relaxation experiments. Polymer, 45(7), 2349-2355. doi:10.1016/j.polymer.2004.01.043 es_ES
dc.description.references Campillo-Fernández, A. J., Salmerón Sánchez, M., Sabater i Serra, R., Meseguer Dueñas, J. M., Monleón Pradas, M., & Gómez Ribelles, J. L. (2008). Water-induced (nano) organization in poly(ethyl acrylate-co-hydroxyethyl acrylate) networks. European Polymer Journal, 44(7), 1996-2004. doi:10.1016/j.eurpolymj.2008.04.032 es_ES
dc.description.references Lan, M. A., Gersbach, C. A., Michael, K. E., Keselowsky, B. G., & García, A. J. (2005). Myoblast proliferation and differentiation on fibronectin-coated self assembled monolayers presenting different surface chemistries. Biomaterials, 26(22), 4523-4531. doi:10.1016/j.biomaterials.2004.11.028 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem