- -

Fibronectin fixation on poly(ethyl acrylate)-based copolymer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fibronectin fixation on poly(ethyl acrylate)-based copolymer

Mostrar el registro completo del ítem

Briz, N.; Antolinos Turpín, CM.; Alio, J.; Garagorri, N.; Gómez Ribelles, JL.; Gómez-Tejedor, JA. (2013). Fibronectin fixation on poly(ethyl acrylate)-based copolymer. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 101B(6):991-997. https://doi.org/10.1002/jbm.b.32907

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/40578

Ficheros en el ítem

Metadatos del ítem

Título: Fibronectin fixation on poly(ethyl acrylate)-based copolymer
Autor: Briz, N. Antolinos Turpín, Carmen María Alio, J. Garagorri, N. Gómez Ribelles, José Luís Gómez-Tejedor, José Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Fecha difusión:
Resumen:
The aim of this paper is to quantify the adhered fibronectin (FN; by adsorption and/or grafting) and the exposure of its cell adhesive motifs (RGD and FNIII7-10) on poly(ethyl acrylate) (PEA) copolymers whose chemical ...[+]
Palabras clave: Acrylic acid , Fibronectin adsorption , Grafting , Hydroxyethyl acrylate , Methacrylic acid , Poly(ethyl acrylate)
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Biomedical Materials Research Part B: Applied Biomaterials. (issn: 1552-4973 )
DOI: 10.1002/jbm.b.32907
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/jbm.b.32907
Código del Proyecto:
info:eu-repo/grantAgreement/CIBER-BBN//00028336 SFPECEPP/ES/Customized Eye Care-Oftalmologia personalizada/
Agradecimientos:
Contract grant sponsors: Centre for Industrial Technological Development (CDTI) of Ministry of Economy and Competitiveness, Project Customized Eye Care-Oftalmologia personalizada _CEYEC CENIT-Sol 00028336 SFPECEPP and ...[+]
Tipo: Artículo

References

Roach, P., Eglin, D., Rohde, K., & Perry, C. C. (2007). Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 18(7), 1263-1277. doi:10.1007/s10856-006-0064-3

Schmidt, D. R., Waldeck, H., & Kao, W. J. (2009). Protein Adsorption to Biomaterials. Biological Interactions on Materials Surfaces, 1-18. doi:10.1007/978-0-387-98161-1_1

Ertel, S. I., Ratner, B. D., & Horbett, T. A. (1990). Radiofrequency plasma deposition of oxygen-containing films on polystyrene and poly(ethylene terephthalate) substrates improves endothelial cell growth. Journal of Biomedical Materials Research, 24(12), 1637-1659. doi:10.1002/jbm.820241207 [+]
Roach, P., Eglin, D., Rohde, K., & Perry, C. C. (2007). Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 18(7), 1263-1277. doi:10.1007/s10856-006-0064-3

Schmidt, D. R., Waldeck, H., & Kao, W. J. (2009). Protein Adsorption to Biomaterials. Biological Interactions on Materials Surfaces, 1-18. doi:10.1007/978-0-387-98161-1_1

Ertel, S. I., Ratner, B. D., & Horbett, T. A. (1990). Radiofrequency plasma deposition of oxygen-containing films on polystyrene and poly(ethylene terephthalate) substrates improves endothelial cell growth. Journal of Biomedical Materials Research, 24(12), 1637-1659. doi:10.1002/jbm.820241207

Way, T.-D., Hsieh, S.-R., Chang, C.-J., Hung, T.-W., & Chiu, C.-H. (2010). Preparation and characterization of branched polymers as postoperative anti-adhesion barriers. Applied Surface Science, 256(10), 3330-3336. doi:10.1016/j.apsusc.2009.12.029

Hsieh, S.-R., Chang, C.-J., Way, T.-D., Kwan, P.-C., & Hung, T.-W. (2009). Preparation and Non-Invasive In-Vivo Imaging of Anti-Adhesion Barriers with Fluorescent Polymeric Marks. Journal of Fluorescence, 19(4), 733-740. doi:10.1007/s10895-009-0469-8

Lee, M. H., Ducheyne, P., Lynch, L., Boettiger, D., & Composto, R. J. (2006). Effect of biomaterial surface properties on fibronectin–α5β1 integrin interaction and cellular attachment. Biomaterials, 27(9), 1907-1916. doi:10.1016/j.biomaterials.2005.11.003

Keselowsky, B. G., Collard, D. M., & Garcı́a, A. J. (2004). Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials, 25(28), 5947-5954. doi:10.1016/j.biomaterials.2004.01.062

Tzoneva, R., Faucheux, N., & Groth, T. (2007). Wettability of substrata controls cell–substrate and cell–cell adhesions. Biochimica et Biophysica Acta (BBA) - General Subjects, 1770(11), 1538-1547. doi:10.1016/j.bbagen.2007.07.008

Rico, P., Hernández, J. C. R., Moratal, D., Altankov, G., Pradas, M. M., & Salmerón-Sánchez, M. (2009). Substrate-Induced Assembly of Fibronectin into Networks: Influence of Surface Chemistry and Effect on Osteoblast Adhesion. Tissue Engineering Part A, 15(11), 3271-3281. doi:10.1089/ten.tea.2009.0141

Gugutkov, D., Altankov, G., Rodríguez Hernández, J. C., Monleón Pradas, M., & Salmerón Sánchez, M. (2010). Fibronectin activity on substrates with controlled OH density. Journal of Biomedical Materials Research Part A, 92A(1), 322-331. doi:10.1002/jbm.a.32374

Salmerón-Sánchez, M., Rico, P., Moratal, D., Lee, T. T., Schwarzbauer, J. E., & García, A. J. (2011). Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials, 32(8), 2099-2105. doi:10.1016/j.biomaterials.2010.11.057

Pérez Olmedilla, M., Garcia-Giralt, N., Pradas, M. M., Ruiz, P. B., Gómez Ribelles, J. L., Palou, E. C., & García, J. C. M. (2006). Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials, 27(7), 1003-1012. doi:10.1016/j.biomaterials.2005.07.030

Soria, J. M., Martínez Ramos, C., Salmerón Sánchez, M., Benavent, V., Campillo Fernández, A., Gómez Ribelles, J. L., … Barcia, J. A. (2006). Survival and differentiation of embryonic neural explants on different biomaterials. Journal of Biomedical Materials Research Part A, 79A(3), 495-502. doi:10.1002/jbm.a.30803

Campillo-Fernandez, A. J., Pastor, S., Abad-Collado, M., Bataille, L., Gomez-Ribelles, J. L., Meseguer-Dueñas, J. M., … Ruiz-Moreno, J. M. (2007). Future Design of a New Keratoprosthesis. Physical and Biological Analysis of Polymeric Substrates for Epithelial Cell Growth. Biomacromolecules, 8(8), 2429-2436. doi:10.1021/bm0703012

Campillo-Fernández, A. J., Unger, R. E., Peters, K., Halstenberg, S., Santos, M., Sánchez, M. S., … Kirkpatrick, C. J. (2009). Analysis of the Biological Response of Endothelial and Fibroblast Cells Cultured on Synthetic Scaffolds with Various Hydrophilic/Hydrophobic Ratios: Influence of Fibronectin Adsorption and Conformation. Tissue Engineering Part A, 15(6), 1331-1341. doi:10.1089/ten.tea.2008.0146

Cutler, S. (2003). Engineering cell adhesive surfaces that direct integrin α5β1 binding using a recombinant fragment of fibronectin. Biomaterials, 24(10), 1759-1770. doi:10.1016/s0142-9612(02)00570-7

Salmerón Sánchez, M., Brı́gido Diego, R., Iannazzo, S. A. ., Gómez Ribelles, J. L., & Monleón Pradas, M. (2004). The structure of poly(ethyl acrylate-co-hydroxyethyl methacrylate) copolymer networks by segmental dynamics studies based on structural relaxation experiments. Polymer, 45(7), 2349-2355. doi:10.1016/j.polymer.2004.01.043

Campillo-Fernández, A. J., Salmerón Sánchez, M., Sabater i Serra, R., Meseguer Dueñas, J. M., Monleón Pradas, M., & Gómez Ribelles, J. L. (2008). Water-induced (nano) organization in poly(ethyl acrylate-co-hydroxyethyl acrylate) networks. European Polymer Journal, 44(7), 1996-2004. doi:10.1016/j.eurpolymj.2008.04.032

Lan, M. A., Gersbach, C. A., Michael, K. E., Keselowsky, B. G., & García, A. J. (2005). Myoblast proliferation and differentiation on fibronectin-coated self assembled monolayers presenting different surface chemistries. Biomaterials, 26(22), 4523-4531. doi:10.1016/j.biomaterials.2004.11.028

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem