Mostrar el registro sencillo del ítem
dc.contributor.author | Albanese, Angela Anna | es_ES |
dc.contributor.author | Bonet Solves, José Antonio | es_ES |
dc.contributor.author | Ricker, Werner Joseph | es_ES |
dc.date.accessioned | 2014-10-03T10:51:22Z | |
dc.date.available | 2014-10-03T10:51:22Z | |
dc.date.issued | 2012-09 | |
dc.identifier.issn | 1578-7303 | |
dc.identifier.uri | http://hdl.handle.net/10251/40626 | |
dc.description.abstract | We present criteria for determining mean ergodicity of C 0-semigroups of linear operators in a sequentially complete, locally convex Hausdorff space X. A characterization of reflexivity of certain spaces X with a basis via mean ergodicity of equicontinuous C 0-semigroups acting in X is also presented. Special results become available in Grothendieck spaces with the Dunford-Pettis property. © 2011 Springer-Verlag. | es_ES |
dc.description.sponsorship | Research partially supported by MICINN and FEDER Project MTM2010-15200 and GV Project Prometeo/2008/101. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Grothendieck | es_ES |
dc.subject | Banach spaces | es_ES |
dc.subject | C 0-semigroup | es_ES |
dc.subject | Locally convex space | es_ES |
dc.subject | Mean ergodic | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Mean ergodic semigroups of operators | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-011-0054-2 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-15200/ES/METODOS DE ANALISIS FUNCIONAL PARA EL ANALISIS MATEMATICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F101/ES/Análisis funcional, teoría de operadores y aplicaciones/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Albanese, AA.; Bonet Solves, JA.; Ricker, WJ. (2012). Mean ergodic semigroups of operators. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. 106(2):299-319. https://doi.org/10.1007/s13398-011-0054-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://link.springer.com/article/10.1007/s13398-011-0054-2 | es_ES |
dc.description.upvformatpinicio | 299 | es_ES |
dc.description.upvformatpfin | 319 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 106 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 235768 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Albanese A.A., Bonet J., Ricker W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009) | es_ES |
dc.description.references | Albanese A.A., Bonet J., Ricker W.J.: Grothendieck spaces with the Dunford–Pettis property. Positivity 14, 145–164 (2010) | es_ES |
dc.description.references | Albanese, A.A., Bonet, J., Ricker, W.J.: On mean ergodic operators. In: Curbera, G.P. et al. (eds.) Vector Measures, Integration and Related Topics. Operator Theory: Advances and Applications, vol. 201, pp. 1–20. Birkhäuser, Basel (2010) | es_ES |
dc.description.references | Albanese A.A., Bonet J., Ricker W.J.: C 0-semigroups and mean ergodic operators in a class of Fréchet spaces. J. Math. Anal. Appl. 365, 142–157 (2010) | es_ES |
dc.description.references | Bonet J., Ricker W.J.: Schauder decompositions and the Grothendieck and the Dunford–Pettis properties in Köthe echelon spaces of infinite order. Positivity 11, 77–93 (2007) | es_ES |
dc.description.references | Bonet J., Ricker W.J.: Mean ergodicity of multiplication operators in weighted spaces of holomorphic functions. Arch. Math. 92, 428–437 (2009) | es_ES |
dc.description.references | Bonet J., de Pagter B., Ricker W.J.: Mean ergodic operators and reflexive Fréchet lattices. Proc. R. Soc. Edinb. Sect. A 141, 897–920 (2011) | es_ES |
dc.description.references | Dunford N., Schwartz J.T.: Linear Operators I: General Theory, 2nd edn. Wiley, New York (1964) | es_ES |
dc.description.references | Eberlein W.F.: Abstract ergodic theorems and weak almost periodic functions. Trans. Am. Math. Soc. 67, 217–240 (1949) | es_ES |
dc.description.references | Edwards R.E.: Functional Analysis. Reinhart and Winston, New York (1965) | es_ES |
dc.description.references | Engel K.-J., Nagel R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (1999) | es_ES |
dc.description.references | Floret, K.: Weakly compact sets. In: LNM, vol. 801. Springer, Berlin (1980) | es_ES |
dc.description.references | Fonf V.P., Lin M., Wojtaszczyk P.: Ergodic characterizations of reflexivity in Banach spaces. J. Funct. Anal. 187, 146–162 (2001) | es_ES |
dc.description.references | Hille, E., Phillips, R.S.: Functional Analysis and Semigroups, 4th edn. American Math. Soc., Providence (1981, revised) | es_ES |
dc.description.references | Jarchow H.: Locally Convex Spaces. B.G. Teubner, Stuttgart (1981) | es_ES |
dc.description.references | Kelley J.L.: General Topology, Rev. Edn, D. van Nostrand Co., Princeton–New York (1961) | es_ES |
dc.description.references | Komatsu H.: Semi-groups of operators in locally convex spaces. J. Math. Soc. Japan 16, 230–262 (1964) | es_ES |
dc.description.references | Komura T.: Semigroups of operators in locally convex spaces. J. Funct. Anal. 2, 258–296 (1968) | es_ES |
dc.description.references | Köthe, G.: Topological Vector Spaces I, 2nd edn. Springer, Berlin (1983, revised) | es_ES |
dc.description.references | Köthe G.: Topological Vector Spaces II. Springer, Berlin (1979) | es_ES |
dc.description.references | Krengel U.: Ergodic Theorems. Walter de Gruyter, Berlin (1985) | es_ES |
dc.description.references | Lotz, H.P. (1984) Tauberian theorems for operators on L ∞ and similar spaces. In: Bierstedt, K.D., Fuchssteiner, B. (eds.) Functional Analyis: Surveys and Recent Results III. North Holland, Amsterdam, pp. 117–133 | es_ES |
dc.description.references | Lotz H.P.: Uniform convergence of operators on L ∞ and similar spaces. Math. Z. 190, 207–220 (1985) | es_ES |
dc.description.references | Meise R., Vogt D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997) | es_ES |
dc.description.references | Miyadera I.: Semigroups of operators in Fréchet spaces and applications to partial differential operators. Tôhoku Math. J. 11, 162–183 (1959) | es_ES |
dc.description.references | Mugnolo D.: A semigroup analogue of the Fonf–Lin–Wojtaszczyk characterization of reflexive Banach spaces with a basis. Studia Math. 164, 243–251 (2004) | es_ES |
dc.description.references | Piszczek K.: Quasi-reflexive Fréchet spaces and mean ergodicity. J. Math. Anal. Appl. 361, 224–233 (2010) | es_ES |
dc.description.references | Piszczek K.: Barrelled spaces and mean ergodicity. RACSAM 104, 5–11 (2010) | es_ES |
dc.description.references | Rudin W.: Functional Analysis. McGraw-Hill, New York (1973) | es_ES |
dc.description.references | Sato R.: On a mean ergodic theorem. Proc. Am. Math. Soc. 83, 563–564 (1981) | es_ES |
dc.description.references | Schaefer H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974) | es_ES |
dc.description.references | Shaw S.-Y.: Ergodic projections of continuous and discrete semigroups. Proc. Am. Math. Soc. 78, 69–76 (1980) | es_ES |
dc.description.references | Yosida K.: Functional Analysis. Springer, Berlin (1980) | es_ES |