- -

Experimental Analysis of the Input Variables' Relevance to Forecast Next Day's Aggregated Electric Demand Using Neural Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental Analysis of the Input Variables' Relevance to Forecast Next Day's Aggregated Electric Demand Using Neural Networks

Mostrar el registro completo del ítem

Hernández, L.; Baladrón Zorita, C.; Aguiar Pérez, JM.; Calavia Domínguez, L.; Carro Martínez, B.; Sanchez-Esguevillas, A.; Garcia Fernandez, P.... (2013). Experimental Analysis of the Input Variables' Relevance to Forecast Next Day's Aggregated Electric Demand Using Neural Networks. Energies. 6(6):2927-2948. doi:10.3390/en6062927

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43121

Ficheros en el ítem

Metadatos del ítem

Título: Experimental Analysis of the Input Variables' Relevance to Forecast Next Day's Aggregated Electric Demand Using Neural Networks
Autor: Hernández, Luis Baladrón Zorita, Carlos Aguiar Pérez, Javier Manuel Calavia Domínguez, Lorena Carro Martínez, Belén Sanchez-Esguevillas, Antonio Garcia Fernandez, Pablo Lloret, Jaime
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Fecha difusión:
Resumen:
Thanks to the built in intelligence (deployment of new intelligent devices and sensors in places where historically they were not present), the Smart Grid and Microgrid paradigms are able to take advantage from aggregated ...[+]
Palabras clave: artificial neural network , aggregated load , smart grid , microgrid , multilayer perceptron
Derechos de uso: Reconocimiento (by)
Fuente:
Energies. (issn: 1996-1073 )
DOI: 10.3390/en6062927
Editorial:
MDPI
Versión del editor: http://dx.doi.org/10.3390/en6062927
Tipo: Artículo

References

Zhang, Q., Lai, K. K., Niu, D., Wang, Q., & Zhang, X. (2012). A Fuzzy Group Forecasting Model Based on Least Squares Support Vector Machine (LS-SVM) for Short-Term Wind Power. Energies, 5(9), 3329-3346. doi:10.3390/en5093329

Hsu, C.-C., & Chen, C.-Y. (2003). Regional load forecasting in Taiwan––applications of artificial neural networks. Energy Conversion and Management, 44(12), 1941-1949. doi:10.1016/s0196-8904(02)00225-x

Carpaneto, E., & Chicco, G. (2008). Probabilistic characterisation of the aggregated residential load patterns. IET Generation, Transmission & Distribution, 2(3), 373. doi:10.1049/iet-gtd:20070280 [+]
Zhang, Q., Lai, K. K., Niu, D., Wang, Q., & Zhang, X. (2012). A Fuzzy Group Forecasting Model Based on Least Squares Support Vector Machine (LS-SVM) for Short-Term Wind Power. Energies, 5(9), 3329-3346. doi:10.3390/en5093329

Hsu, C.-C., & Chen, C.-Y. (2003). Regional load forecasting in Taiwan––applications of artificial neural networks. Energy Conversion and Management, 44(12), 1941-1949. doi:10.1016/s0196-8904(02)00225-x

Carpaneto, E., & Chicco, G. (2008). Probabilistic characterisation of the aggregated residential load patterns. IET Generation, Transmission & Distribution, 2(3), 373. doi:10.1049/iet-gtd:20070280

Shu Fan, Methaprayoon, K., & Wei-Jen Lee. (2009). Multiregion Load Forecasting for System With Large Geographical Area. IEEE Transactions on Industry Applications, 45(4), 1452-1459. doi:10.1109/tia.2009.2023569

Pudjianto, D., Ramsay, C., & Strbac, G. (2007). Virtual power plant and system integration of distributed energy resources. IET Renewable Power Generation, 1(1), 10. doi:10.1049/iet-rpg:20060023

Ruiz, N., Cobelo, I., & Oyarzabal, J. (2009). A Direct Load Control Model for Virtual Power Plant Management. IEEE Transactions on Power Systems, 24(2), 959-966. doi:10.1109/tpwrs.2009.2016607

Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., … Cook, D. (2013). A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Communications Magazine, 51(1), 106-113. doi:10.1109/mcom.2013.6400446

Mousavi, S. M., & Abyaneh, H. A. (2011). Effect of Load Models on Probabilistic Characterization of Aggregated Load Patterns. IEEE Transactions on Power Systems, 26(2), 811-819. doi:10.1109/tpwrs.2010.2062542

Ipakchi, A., & Albuyeh, F. (2009). Grid of the future. IEEE Power and Energy Magazine, 7(2), 52-62. doi:10.1109/mpe.2008.931384

Naphade, M., Banavar, G., Harrison, C., Paraszczak, J., & Morris, R. (2011). Smarter Cities and Their Innovation Challenges. Computer, 44(6), 32-39. doi:10.1109/mc.2011.187

Hernández, L., Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., … Gómez, J. (2012). A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework. Sensors, 12(9), 11571-11591. doi:10.3390/s120911571

Hernandez, L., Baladrón, C., Aguiar, J., Carro, B., Sanchez-Esguevillas, A., & Lloret, J. (2013). Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks. Energies, 6(3), 1385-1408. doi:10.3390/en6031385

Perez, E., Beltran, H., Aparicio, N., & Rodriguez, P. (2013). Predictive Power Control for PV Plants With Energy Storage. IEEE Transactions on Sustainable Energy, 4(2), 482-490. doi:10.1109/tste.2012.2210255

Ogliari, E., Grimaccia, F., Leva, S., & Mussetta, M. (2013). Hybrid Predictive Models for Accurate Forecasting in PV Systems. Energies, 6(4), 1918-1929. doi:10.3390/en6041918

Douglas, A. P., Breipohl, A. M., Lee, F. N., & Adapa, R. (1998). The impacts of temperature forecast uncertainty on Bayesian load forecasting. IEEE Transactions on Power Systems, 13(4), 1507-1513. doi:10.1109/59.736298

Sadownik, R., & Barbosa, E. P. (1999). Short-term forecasting of industrial electricity consumption in Brazil. Journal of Forecasting, 18(3), 215-224. doi:10.1002/(sici)1099-131x(199905)18:3<215::aid-for719>3.0.co;2-b

Huang, S. R. (1997). Short-term load forecasting using threshold autoregressive models. IEE Proceedings - Generation, Transmission and Distribution, 144(5), 477. doi:10.1049/ip-gtd:19971144

Infield, D. G., & Hill, D. C. (1998). Optimal smoothing for trend removal in short term electricity demand forecasting. IEEE Transactions on Power Systems, 13(3), 1115-1120. doi:10.1109/59.709108

Sargunaraj, S., Sen Gupta, D. P., & Devi, S. (1997). Short-term load forecasting for demand side management. IEE Proceedings - Generation, Transmission and Distribution, 144(1), 68. doi:10.1049/ip-gtd:19970599

Hong-Tzer Yang, & Chao-Ming Huang. (1998). A new short-term load forecasting approach using self-organizing fuzzy ARMAX models. IEEE Transactions on Power Systems, 13(1), 217-225. doi:10.1109/59.651639

Hong-Tzer Yang, Chao-Ming Huang, & Ching-Lien Huang. (1996). Identification of ARMAX model for short term load forecasting: an evolutionary programming approach. IEEE Transactions on Power Systems, 11(1), 403-408. doi:10.1109/59.486125

Yu, Z. (1996). A temperature match based optimization method for daily load prediction considering DLC effect. IEEE Transactions on Power Systems, 11(2), 728-733. doi:10.1109/59.496146

Charytoniuk, W., Chen, M. S., & Van Olinda, P. (1998). Nonparametric regression based short-term load forecasting. IEEE Transactions on Power Systems, 13(3), 725-730. doi:10.1109/59.708572

Taylor, J. W., & Majithia, S. (2000). Using combined forecasts with changing weights for electricity demand profiling. Journal of the Operational Research Society, 51(1), 72-82. doi:10.1057/palgrave.jors.2600856

Ramanathan, R., Engle, R., Granger, C. W. J., Vahid-Araghi, F., & Brace, C. (1997). Short-run forecasts of electricity loads and peaks. International Journal of Forecasting, 13(2), 161-174. doi:10.1016/s0169-2070(97)00015-0

Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2), 179-211. doi:10.1207/s15516709cog1402_1

Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7(2-3), 195-225. doi:10.1007/bf00114844

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464-1480. doi:10.1109/5.58325

Razavi, S., & Tolson, B. A. (2011). A New Formulation for Feedforward Neural Networks. IEEE Transactions on Neural Networks, 22(10), 1588-1598. doi:10.1109/tnn.2011.2163169

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem