- -

Experimental Analysis of the Input Variables' Relevance to Forecast Next Day's Aggregated Electric Demand Using Neural Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental Analysis of the Input Variables' Relevance to Forecast Next Day's Aggregated Electric Demand Using Neural Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández, Luis es_ES
dc.contributor.author Baladrón Zorita, Carlos es_ES
dc.contributor.author Aguiar Pérez, Javier Manuel es_ES
dc.contributor.author Calavia Domínguez, Lorena es_ES
dc.contributor.author Carro Martínez, Belén es_ES
dc.contributor.author Sanchez-Esguevillas, Antonio es_ES
dc.contributor.author Garcia Fernandez, Pablo es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2014-10-10T15:13:27Z
dc.date.available 2014-10-10T15:13:27Z
dc.date.issued 2013-06
dc.identifier.issn 1996-1073
dc.identifier.uri http://hdl.handle.net/10251/43121
dc.description.abstract Thanks to the built in intelligence (deployment of new intelligent devices and sensors in places where historically they were not present), the Smart Grid and Microgrid paradigms are able to take advantage from aggregated load forecasting, which opens the door for the implementation of new algorithms to seize this information for optimization and advanced planning. Therefore, accuracy in load forecasts will potentially have a big impact on key operation factors for the future Smart Grid/Microgrid-based energy network like user satisfaction and resource saving, and new methods to achieve an efficient prediction in future energy landscapes (very different from the centralized, big area networks studied so far). This paper proposes different improved models to forecast next day's aggregated load using artificial neural networks, taking into account the variables that are most relevant. In particular, seven models based on the multilayer perceptron will be proposed, progressively adding input variables after analyzing the influence of climate factors on aggregated load. The results section presents the forecast from the proposed models, obtained from real data. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject artificial neural network es_ES
dc.subject aggregated load es_ES
dc.subject smart grid es_ES
dc.subject microgrid es_ES
dc.subject multilayer perceptron es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Experimental Analysis of the Input Variables' Relevance to Forecast Next Day's Aggregated Electric Demand Using Neural Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en6062927
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Hernández, L.; Baladrón Zorita, C.; Aguiar Pérez, JM.; Calavia Domínguez, L.; Carro Martínez, B.; Sanchez-Esguevillas, A.; Garcia Fernandez, P.... (2013). Experimental Analysis of the Input Variables' Relevance to Forecast Next Day's Aggregated Electric Demand Using Neural Networks. Energies. 6(6):2927-2948. doi:10.3390/en6062927 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/en6062927 es_ES
dc.description.upvformatpinicio 2927 es_ES
dc.description.upvformatpfin 2948 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 265801
dc.description.references Zhang, Q., Lai, K. K., Niu, D., Wang, Q., & Zhang, X. (2012). A Fuzzy Group Forecasting Model Based on Least Squares Support Vector Machine (LS-SVM) for Short-Term Wind Power. Energies, 5(9), 3329-3346. doi:10.3390/en5093329 es_ES
dc.description.references Hsu, C.-C., & Chen, C.-Y. (2003). Regional load forecasting in Taiwan––applications of artificial neural networks. Energy Conversion and Management, 44(12), 1941-1949. doi:10.1016/s0196-8904(02)00225-x es_ES
dc.description.references Carpaneto, E., & Chicco, G. (2008). Probabilistic characterisation of the aggregated residential load patterns. IET Generation, Transmission & Distribution, 2(3), 373. doi:10.1049/iet-gtd:20070280 es_ES
dc.description.references Shu Fan, Methaprayoon, K., & Wei-Jen Lee. (2009). Multiregion Load Forecasting for System With Large Geographical Area. IEEE Transactions on Industry Applications, 45(4), 1452-1459. doi:10.1109/tia.2009.2023569 es_ES
dc.description.references Pudjianto, D., Ramsay, C., & Strbac, G. (2007). Virtual power plant and system integration of distributed energy resources. IET Renewable Power Generation, 1(1), 10. doi:10.1049/iet-rpg:20060023 es_ES
dc.description.references Ruiz, N., Cobelo, I., & Oyarzabal, J. (2009). A Direct Load Control Model for Virtual Power Plant Management. IEEE Transactions on Power Systems, 24(2), 959-966. doi:10.1109/tpwrs.2009.2016607 es_ES
dc.description.references Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., … Cook, D. (2013). A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Communications Magazine, 51(1), 106-113. doi:10.1109/mcom.2013.6400446 es_ES
dc.description.references Mousavi, S. M., & Abyaneh, H. A. (2011). Effect of Load Models on Probabilistic Characterization of Aggregated Load Patterns. IEEE Transactions on Power Systems, 26(2), 811-819. doi:10.1109/tpwrs.2010.2062542 es_ES
dc.description.references Ipakchi, A., & Albuyeh, F. (2009). Grid of the future. IEEE Power and Energy Magazine, 7(2), 52-62. doi:10.1109/mpe.2008.931384 es_ES
dc.description.references Naphade, M., Banavar, G., Harrison, C., Paraszczak, J., & Morris, R. (2011). Smarter Cities and Their Innovation Challenges. Computer, 44(6), 32-39. doi:10.1109/mc.2011.187 es_ES
dc.description.references Hernández, L., Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., … Gómez, J. (2012). A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework. Sensors, 12(9), 11571-11591. doi:10.3390/s120911571 es_ES
dc.description.references Hernandez, L., Baladrón, C., Aguiar, J., Carro, B., Sanchez-Esguevillas, A., & Lloret, J. (2013). Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks. Energies, 6(3), 1385-1408. doi:10.3390/en6031385 es_ES
dc.description.references Perez, E., Beltran, H., Aparicio, N., & Rodriguez, P. (2013). Predictive Power Control for PV Plants With Energy Storage. IEEE Transactions on Sustainable Energy, 4(2), 482-490. doi:10.1109/tste.2012.2210255 es_ES
dc.description.references Ogliari, E., Grimaccia, F., Leva, S., & Mussetta, M. (2013). Hybrid Predictive Models for Accurate Forecasting in PV Systems. Energies, 6(4), 1918-1929. doi:10.3390/en6041918 es_ES
dc.description.references Douglas, A. P., Breipohl, A. M., Lee, F. N., & Adapa, R. (1998). The impacts of temperature forecast uncertainty on Bayesian load forecasting. IEEE Transactions on Power Systems, 13(4), 1507-1513. doi:10.1109/59.736298 es_ES
dc.description.references Sadownik, R., & Barbosa, E. P. (1999). Short-term forecasting of industrial electricity consumption in Brazil. Journal of Forecasting, 18(3), 215-224. doi:10.1002/(sici)1099-131x(199905)18:3<215::aid-for719>3.0.co;2-b es_ES
dc.description.references Huang, S. R. (1997). Short-term load forecasting using threshold autoregressive models. IEE Proceedings - Generation, Transmission and Distribution, 144(5), 477. doi:10.1049/ip-gtd:19971144 es_ES
dc.description.references Infield, D. G., & Hill, D. C. (1998). Optimal smoothing for trend removal in short term electricity demand forecasting. IEEE Transactions on Power Systems, 13(3), 1115-1120. doi:10.1109/59.709108 es_ES
dc.description.references Sargunaraj, S., Sen Gupta, D. P., & Devi, S. (1997). Short-term load forecasting for demand side management. IEE Proceedings - Generation, Transmission and Distribution, 144(1), 68. doi:10.1049/ip-gtd:19970599 es_ES
dc.description.references Hong-Tzer Yang, & Chao-Ming Huang. (1998). A new short-term load forecasting approach using self-organizing fuzzy ARMAX models. IEEE Transactions on Power Systems, 13(1), 217-225. doi:10.1109/59.651639 es_ES
dc.description.references Hong-Tzer Yang, Chao-Ming Huang, & Ching-Lien Huang. (1996). Identification of ARMAX model for short term load forecasting: an evolutionary programming approach. IEEE Transactions on Power Systems, 11(1), 403-408. doi:10.1109/59.486125 es_ES
dc.description.references Yu, Z. (1996). A temperature match based optimization method for daily load prediction considering DLC effect. IEEE Transactions on Power Systems, 11(2), 728-733. doi:10.1109/59.496146 es_ES
dc.description.references Charytoniuk, W., Chen, M. S., & Van Olinda, P. (1998). Nonparametric regression based short-term load forecasting. IEEE Transactions on Power Systems, 13(3), 725-730. doi:10.1109/59.708572 es_ES
dc.description.references Taylor, J. W., & Majithia, S. (2000). Using combined forecasts with changing weights for electricity demand profiling. Journal of the Operational Research Society, 51(1), 72-82. doi:10.1057/palgrave.jors.2600856 es_ES
dc.description.references Ramanathan, R., Engle, R., Granger, C. W. J., Vahid-Araghi, F., & Brace, C. (1997). Short-run forecasts of electricity loads and peaks. International Journal of Forecasting, 13(2), 161-174. doi:10.1016/s0169-2070(97)00015-0 es_ES
dc.description.references Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2), 179-211. doi:10.1207/s15516709cog1402_1 es_ES
dc.description.references Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7(2-3), 195-225. doi:10.1007/bf00114844 es_ES
dc.description.references Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464-1480. doi:10.1109/5.58325 es_ES
dc.description.references Razavi, S., & Tolson, B. A. (2011). A New Formulation for Feedforward Neural Networks. IEEE Transactions on Neural Networks, 22(10), 1588-1598. doi:10.1109/tnn.2011.2163169 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem