Mostrar el registro sencillo del ítem
dc.contributor.author | Hernández, Luis | es_ES |
dc.contributor.author | Baladrón Zorita, Carlos | es_ES |
dc.contributor.author | Aguiar Pérez, Javier Manuel | es_ES |
dc.contributor.author | Calavia Domínguez, Lorena | es_ES |
dc.contributor.author | Carro Martínez, Belén | es_ES |
dc.contributor.author | Sanchez-Esguevillas, Antonio | es_ES |
dc.contributor.author | Garcia Fernandez, Pablo | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.date.accessioned | 2014-10-10T15:13:27Z | |
dc.date.available | 2014-10-10T15:13:27Z | |
dc.date.issued | 2013-06 | |
dc.identifier.issn | 1996-1073 | |
dc.identifier.uri | http://hdl.handle.net/10251/43121 | |
dc.description.abstract | Thanks to the built in intelligence (deployment of new intelligent devices and sensors in places where historically they were not present), the Smart Grid and Microgrid paradigms are able to take advantage from aggregated load forecasting, which opens the door for the implementation of new algorithms to seize this information for optimization and advanced planning. Therefore, accuracy in load forecasts will potentially have a big impact on key operation factors for the future Smart Grid/Microgrid-based energy network like user satisfaction and resource saving, and new methods to achieve an efficient prediction in future energy landscapes (very different from the centralized, big area networks studied so far). This paper proposes different improved models to forecast next day's aggregated load using artificial neural networks, taking into account the variables that are most relevant. In particular, seven models based on the multilayer perceptron will be proposed, progressively adding input variables after analyzing the influence of climate factors on aggregated load. The results section presents the forecast from the proposed models, obtained from real data. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | artificial neural network | es_ES |
dc.subject | aggregated load | es_ES |
dc.subject | smart grid | es_ES |
dc.subject | microgrid | es_ES |
dc.subject | multilayer perceptron | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | Experimental Analysis of the Input Variables' Relevance to Forecast Next Day's Aggregated Electric Demand Using Neural Networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en6062927 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.description.bibliographicCitation | Hernández, L.; Baladrón Zorita, C.; Aguiar Pérez, JM.; Calavia Domínguez, L.; Carro Martínez, B.; Sanchez-Esguevillas, A.; Garcia Fernandez, P.... (2013). Experimental Analysis of the Input Variables' Relevance to Forecast Next Day's Aggregated Electric Demand Using Neural Networks. Energies. 6(6):2927-2948. doi:10.3390/en6062927 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/en6062927 | es_ES |
dc.description.upvformatpinicio | 2927 | es_ES |
dc.description.upvformatpfin | 2948 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 265801 | |
dc.description.references | Zhang, Q., Lai, K. K., Niu, D., Wang, Q., & Zhang, X. (2012). A Fuzzy Group Forecasting Model Based on Least Squares Support Vector Machine (LS-SVM) for Short-Term Wind Power. Energies, 5(9), 3329-3346. doi:10.3390/en5093329 | es_ES |
dc.description.references | Hsu, C.-C., & Chen, C.-Y. (2003). Regional load forecasting in Taiwan––applications of artificial neural networks. Energy Conversion and Management, 44(12), 1941-1949. doi:10.1016/s0196-8904(02)00225-x | es_ES |
dc.description.references | Carpaneto, E., & Chicco, G. (2008). Probabilistic characterisation of the aggregated residential load patterns. IET Generation, Transmission & Distribution, 2(3), 373. doi:10.1049/iet-gtd:20070280 | es_ES |
dc.description.references | Shu Fan, Methaprayoon, K., & Wei-Jen Lee. (2009). Multiregion Load Forecasting for System With Large Geographical Area. IEEE Transactions on Industry Applications, 45(4), 1452-1459. doi:10.1109/tia.2009.2023569 | es_ES |
dc.description.references | Pudjianto, D., Ramsay, C., & Strbac, G. (2007). Virtual power plant and system integration of distributed energy resources. IET Renewable Power Generation, 1(1), 10. doi:10.1049/iet-rpg:20060023 | es_ES |
dc.description.references | Ruiz, N., Cobelo, I., & Oyarzabal, J. (2009). A Direct Load Control Model for Virtual Power Plant Management. IEEE Transactions on Power Systems, 24(2), 959-966. doi:10.1109/tpwrs.2009.2016607 | es_ES |
dc.description.references | Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., … Cook, D. (2013). A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Communications Magazine, 51(1), 106-113. doi:10.1109/mcom.2013.6400446 | es_ES |
dc.description.references | Mousavi, S. M., & Abyaneh, H. A. (2011). Effect of Load Models on Probabilistic Characterization of Aggregated Load Patterns. IEEE Transactions on Power Systems, 26(2), 811-819. doi:10.1109/tpwrs.2010.2062542 | es_ES |
dc.description.references | Ipakchi, A., & Albuyeh, F. (2009). Grid of the future. IEEE Power and Energy Magazine, 7(2), 52-62. doi:10.1109/mpe.2008.931384 | es_ES |
dc.description.references | Naphade, M., Banavar, G., Harrison, C., Paraszczak, J., & Morris, R. (2011). Smarter Cities and Their Innovation Challenges. Computer, 44(6), 32-39. doi:10.1109/mc.2011.187 | es_ES |
dc.description.references | Hernández, L., Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., … Gómez, J. (2012). A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework. Sensors, 12(9), 11571-11591. doi:10.3390/s120911571 | es_ES |
dc.description.references | Hernandez, L., Baladrón, C., Aguiar, J., Carro, B., Sanchez-Esguevillas, A., & Lloret, J. (2013). Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks. Energies, 6(3), 1385-1408. doi:10.3390/en6031385 | es_ES |
dc.description.references | Perez, E., Beltran, H., Aparicio, N., & Rodriguez, P. (2013). Predictive Power Control for PV Plants With Energy Storage. IEEE Transactions on Sustainable Energy, 4(2), 482-490. doi:10.1109/tste.2012.2210255 | es_ES |
dc.description.references | Ogliari, E., Grimaccia, F., Leva, S., & Mussetta, M. (2013). Hybrid Predictive Models for Accurate Forecasting in PV Systems. Energies, 6(4), 1918-1929. doi:10.3390/en6041918 | es_ES |
dc.description.references | Douglas, A. P., Breipohl, A. M., Lee, F. N., & Adapa, R. (1998). The impacts of temperature forecast uncertainty on Bayesian load forecasting. IEEE Transactions on Power Systems, 13(4), 1507-1513. doi:10.1109/59.736298 | es_ES |
dc.description.references | Sadownik, R., & Barbosa, E. P. (1999). Short-term forecasting of industrial electricity consumption in Brazil. Journal of Forecasting, 18(3), 215-224. doi:10.1002/(sici)1099-131x(199905)18:3<215::aid-for719>3.0.co;2-b | es_ES |
dc.description.references | Huang, S. R. (1997). Short-term load forecasting using threshold autoregressive models. IEE Proceedings - Generation, Transmission and Distribution, 144(5), 477. doi:10.1049/ip-gtd:19971144 | es_ES |
dc.description.references | Infield, D. G., & Hill, D. C. (1998). Optimal smoothing for trend removal in short term electricity demand forecasting. IEEE Transactions on Power Systems, 13(3), 1115-1120. doi:10.1109/59.709108 | es_ES |
dc.description.references | Sargunaraj, S., Sen Gupta, D. P., & Devi, S. (1997). Short-term load forecasting for demand side management. IEE Proceedings - Generation, Transmission and Distribution, 144(1), 68. doi:10.1049/ip-gtd:19970599 | es_ES |
dc.description.references | Hong-Tzer Yang, & Chao-Ming Huang. (1998). A new short-term load forecasting approach using self-organizing fuzzy ARMAX models. IEEE Transactions on Power Systems, 13(1), 217-225. doi:10.1109/59.651639 | es_ES |
dc.description.references | Hong-Tzer Yang, Chao-Ming Huang, & Ching-Lien Huang. (1996). Identification of ARMAX model for short term load forecasting: an evolutionary programming approach. IEEE Transactions on Power Systems, 11(1), 403-408. doi:10.1109/59.486125 | es_ES |
dc.description.references | Yu, Z. (1996). A temperature match based optimization method for daily load prediction considering DLC effect. IEEE Transactions on Power Systems, 11(2), 728-733. doi:10.1109/59.496146 | es_ES |
dc.description.references | Charytoniuk, W., Chen, M. S., & Van Olinda, P. (1998). Nonparametric regression based short-term load forecasting. IEEE Transactions on Power Systems, 13(3), 725-730. doi:10.1109/59.708572 | es_ES |
dc.description.references | Taylor, J. W., & Majithia, S. (2000). Using combined forecasts with changing weights for electricity demand profiling. Journal of the Operational Research Society, 51(1), 72-82. doi:10.1057/palgrave.jors.2600856 | es_ES |
dc.description.references | Ramanathan, R., Engle, R., Granger, C. W. J., Vahid-Araghi, F., & Brace, C. (1997). Short-run forecasts of electricity loads and peaks. International Journal of Forecasting, 13(2), 161-174. doi:10.1016/s0169-2070(97)00015-0 | es_ES |
dc.description.references | Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2), 179-211. doi:10.1207/s15516709cog1402_1 | es_ES |
dc.description.references | Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7(2-3), 195-225. doi:10.1007/bf00114844 | es_ES |
dc.description.references | Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464-1480. doi:10.1109/5.58325 | es_ES |
dc.description.references | Razavi, S., & Tolson, B. A. (2011). A New Formulation for Feedforward Neural Networks. IEEE Transactions on Neural Networks, 22(10), 1588-1598. doi:10.1109/tnn.2011.2163169 | es_ES |