Booklets European Comission. Your Guide to the Lisbon Treaty 2009http://ec.europa.eu/publications/booklets/others/84/en.pdf
Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., … Cook, D. (2013). A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Communications Magazine, 51(1), 106-113. doi:10.1109/mcom.2013.6400446
http://ec.europa.eu/energy/technology/set_plan/set_plan_en.htm
[+]
Booklets European Comission. Your Guide to the Lisbon Treaty 2009http://ec.europa.eu/publications/booklets/others/84/en.pdf
Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., … Cook, D. (2013). A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Communications Magazine, 51(1), 106-113. doi:10.1109/mcom.2013.6400446
http://ec.europa.eu/energy/technology/set_plan/set_plan_en.htm
FUTURED—Spanish Technological Platform for Energy Grids Home Pagehttp://www.futured.es/
European Technology Platform for Electricity Networks of the Future—SmartGrids ETP Home Pagehttp://www.smartgrids.eu/
Kim, H.-M., Kinoshita, T., & Shin, M.-C. (2010). A Multiagent System for Autonomous Operation of Islanded Microgrids Based on a Power Market Environment. Energies, 3(12), 1972-1990. doi:10.3390/en3121972
Kim, H.-M., Lim, Y., & Kinoshita, T. (2012). An Intelligent Multiagent System for Autonomous Microgrid Operation. Energies, 5(9), 3347-3362. doi:10.3390/en5093347
Xiao, Z., Li, T., Huang, M., Shi, J., Yang, J., Yu, J., & Wu, W. (2010). Hierarchical MAS Based Control Strategy for Microgrid. Energies, 3(9), 1622-1638. doi:10.3390/en3091622
Hong, Y.-Y., & Chou, J.-H. (2012). Nonintrusive Energy Monitoring for Microgrids Using Hybrid Self-Organizing Feature-Mapping Networks. Energies, 5(7), 2578-2593. doi:10.3390/en5072578
Douglas, A. P., Breipohl, A. M., Lee, F. N., & Adapa, R. (1998). The impacts of temperature forecast uncertainty on Bayesian load forecasting. IEEE Transactions on Power Systems, 13(4), 1507-1513. doi:10.1109/59.736298
Sadownik, R., & Barbosa, E. P. (1999). Short-term forecasting of industrial electricity consumption in Brazil. Journal of Forecasting, 18(3), 215-224. doi:10.1002/(sici)1099-131x(199905)18:3<215::aid-for719>3.0.co;2-b
Huang, S. R. (1997). Short-term load forecasting using threshold autoregressive models. IEE Proceedings - Generation, Transmission and Distribution, 144(5), 477. doi:10.1049/ip-gtd:19971144
Infield, D. G., & Hill, D. C. (1998). Optimal smoothing for trend removal in short term electricity demand forecasting. IEEE Transactions on Power Systems, 13(3), 1115-1120. doi:10.1109/59.709108
Sargunaraj, S., Sen Gupta, D. P., & Devi, S. (1997). Short-term load forecasting for demand side management. IEE Proceedings - Generation, Transmission and Distribution, 144(1), 68. doi:10.1049/ip-gtd:19970599
Hong-Tzer Yang, & Chao-Ming Huang. (1998). A new short-term load forecasting approach using self-organizing fuzzy ARMAX models. IEEE Transactions on Power Systems, 13(1), 217-225. doi:10.1109/59.651639
Hong-Tzer Yang, Chao-Ming Huang, & Ching-Lien Huang. (1996). Identification of ARMAX model for short term load forecasting: an evolutionary programming approach. IEEE Transactions on Power Systems, 11(1), 403-408. doi:10.1109/59.486125
Yu, Z. (1996). A temperature match based optimization method for daily load prediction considering DLC effect. IEEE Transactions on Power Systems, 11(2), 728-733. doi:10.1109/59.496146
Charytoniuk, W., Chen, M. S., & Van Olinda, P. (1998). Nonparametric regression based short-term load forecasting. IEEE Transactions on Power Systems, 13(3), 725-730. doi:10.1109/59.708572
Taylor, J. W., & Majithia, S. (2000). Using combined forecasts with changing weights for electricity demand profiling. Journal of the Operational Research Society, 51(1), 72-82. doi:10.1057/palgrave.jors.2600856
Ramanathan, R., Engle, R., Granger, C. W. J., Vahid-Araghi, F., & Brace, C. (1997). Short-run forecasts of electricity loads and peaks. International Journal of Forecasting, 13(2), 161-174. doi:10.1016/s0169-2070(97)00015-0
Soliman, S. A., Persaud, S., El-Nagar, K., & El-Hawary, M. E. (1997). Application of least absolute value parameter estimation based on linear programming to short-term load forecasting. International Journal of Electrical Power & Energy Systems, 19(3), 209-216. doi:10.1016/s0142-0615(96)00048-8
Hyde, O., & Hodnett, P. F. (1997). An adaptable automated procedure for short-term electricity load forecasting. IEEE Transactions on Power Systems, 12(1), 84-94. doi:10.1109/59.574927
Ku-Long Ho, Yuan-Yih Hsu, Chuan-Fu Chen, Tzong-En Lee, Chih-Chien Liang, Tsau-Shin Lai, & Kung-Keng Chen. (1990). Short term load forecasting of Taiwan power system using a knowledge-based expert system. IEEE Transactions on Power Systems, 5(4), 1214-1221. doi:10.1109/59.99372
Rahman, S., & Hazim, O. (1993). A generalized knowledge-based short-term load-forecasting technique. IEEE Transactions on Power Systems, 8(2), 508-514. doi:10.1109/59.260833
Mori, H., & Kobayashi, H. (1996). Optimal fuzzy inference for short-term load forecasting. IEEE Transactions on Power Systems, 11(1), 390-396. doi:10.1109/59.486123
Bakirtzis, A. G., Theocharis, J. B., Kiartzis, S. J., & Satsios, K. J. (1995). Short term load forecasting using fuzzy neural networks. IEEE Transactions on Power Systems, 10(3), 1518-1524. doi:10.1109/59.466494
Papadakis, S. E., Theocharis, J. B., Kiartzis, S. J., & Bakirtzis, A. G. (1998). A novel approach to short-term load forecasting using fuzzy neural networks. IEEE Transactions on Power Systems, 13(2), 480-492. doi:10.1109/59.667372
Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2), 179-211. doi:10.1207/s15516709cog1402_1
Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7(2-3), 195-225. doi:10.1007/bf00114844
Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464-1480. doi:10.1109/5.58325
Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., & Hernández, L. (2012). Performance Study of the Application of Artificial Neural Networks to the Completion and Prediction of Data Retrieved by Underwater Sensors. Sensors, 12(2), 1468-1481. doi:10.3390/s120201468
Martínez-Martínez, V., Baladrón, C., Gomez-Gil, J., Ruiz-Ruiz, G., Navas-Gracia, L. M., Aguiar, J. M., & Carro, B. (2012). Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks. Sensors, 12(10), 14004-14021. doi:10.3390/s121014004
Park, D. C., El-Sharkawi, M. A., Marks, R. J., Atlas, L. E., & Damborg, M. J. (1991). Electric load forecasting using an artificial neural network. IEEE Transactions on Power Systems, 6(2), 442-449. doi:10.1109/59.76685
Ho, K. L., Hsu, Y.-Y., & Yang, C.-C. (1992). Short term load forecasting using a multilayer neural network with an adaptive learning algorithm. IEEE Transactions on Power Systems, 7(1), 141-149. doi:10.1109/59.141697
Drezga, I., & Rahman, S. (1998). Input variable selection for ANN-based short-term load forecasting. IEEE Transactions on Power Systems, 13(4), 1238-1244. doi:10.1109/59.736244
Drezga, I., & Rahman, S. (1999). Short-term load forecasting with local ANN predictors. IEEE Transactions on Power Systems, 14(3), 844-850. doi:10.1109/59.780894
Lee, K. Y., Cha, Y. T., & Park, J. H. (1992). Short-term load forecasting using an artificial neural network. IEEE Transactions on Power Systems, 7(1), 124-132. doi:10.1109/59.141695
Lu, C.-N., Wu, H.-T., & Vemuri, S. (1993). Neural network based short term load forecasting. IEEE Transactions on Power Systems, 8(1), 336-342. doi:10.1109/59.221223
Papalexopoulos, A. D., Shangyou Hao, & Tie-Mao Peng. (1994). An implementation of a neural network based load forecasting model for the EMS. IEEE Transactions on Power Systems, 9(4), 1956-1962. doi:10.1109/59.331456
Bakirtzls, A. G., Petridls, V., Klartzis, S. J., Alexladls, M. C., & Malssls, A. H. (1996). A neural network short term load forecasting model for the Greek power system. IEEE Transactions on Power Systems, 11(2), 858-863. doi:10.1109/59.496166
AlFuhaid, A. S., El-Sayed, M. A., & Mahmoud, M. S. (1997). Cascaded artificial neural networks for short-term load forecasting. IEEE Transactions on Power Systems, 12(4), 1524-1529. doi:10.1109/59.627852
Lamedica, R., Prudenzi, A., Sforna, M., Caciotta, M., & Cencellli, V. O. (1996). A neural network based technique for short-term forecasting of anomalous load periods. IEEE Transactions on Power Systems, 11(4), 1749-1756. doi:10.1109/59.544638
Srinivasan, D. (1994). Forecasting daily load curves using a hybrid fuzzy-neural approach. IEE Proceedings - Generation, Transmission and Distribution, 141(6), 561. doi:10.1049/ip-gtd:19941288
Kwang-Ho Kim, Jong-Keun Park, Kab-Ju Hwang, & Sung-Hak Kim. (1995). Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems. IEEE Transactions on Power Systems, 10(3), 1534-1539. doi:10.1109/59.466492
Daneshdoost, M., Lotfalian, M., Bumroonggit, G., & Ngoy, J. P. (1998). Neural network with fuzzy set-based classification for short-term load forecasting. IEEE Transactions on Power Systems, 13(4), 1386-1391. doi:10.1109/59.736281
Senjyu, T., Mandal, P., Uezato, K., & Funabashi, T. (2005). Next Day Load Curve Forecasting Using Hybrid Correction Method. IEEE Transactions on Power Systems, 20(1), 102-109. doi:10.1109/tpwrs.2004.831256
Hsu, Y.-Y., & Yang, C.-C. (1991). Design of artificial neural networks for short-term load forecasting. Part 2: Multilayer feedforward networks for peak load and valley load forecasting. IEE Proceedings C Generation, Transmission and Distribution, 138(5), 414. doi:10.1049/ip-c.1991.0052
Rejc, M., & Pantos, M. (2011). Short-Term Transmission-Loss Forecast for the Slovenian Transmission Power System Based on a Fuzzy-Logic Decision Approach. IEEE Transactions on Power Systems, 26(3), 1511-1521. doi:10.1109/tpwrs.2010.2096829
Wang, Y., Xia, Q., & Kang, C. (2011). Secondary Forecasting Based on Deviation Analysis for Short-Term Load Forecasting. IEEE Transactions on Power Systems, 26(2), 500-507. doi:10.1109/tpwrs.2010.2052638
Kebriaei, H., Araabi, B. N., & Rahimi-Kian, A. (2011). Short-Term Load Forecasting With a New Nonsymmetric Penalty Function. IEEE Transactions on Power Systems, 26(4), 1817-1825. doi:10.1109/tpwrs.2011.2142330
Bishop, C. M. (1994). Neural networks and their applications. Review of Scientific Instruments, 65(6), 1803-1832. doi:10.1063/1.1144830
Taylor, J. W., & Buizza, R. (2002). Neural network load forecasting with weather ensemble predictions. IEEE Transactions on Power Systems, 17(3), 626-632. doi:10.1109/tpwrs.2002.800906
Chu, W.-C., Chen, Y.-P., Xu, Z.-W., & Lee, W.-J. (2011). Multiregion Short-Term Load Forecasting in Consideration of HI and Load/Weather Diversity. IEEE Transactions on Industry Applications, 47(1), 232-237. doi:10.1109/tia.2010.2090440
Zhang, W. Y., Hong, W.-C., Dong, Y., Tsai, G., Sung, J.-T., & Fan, G. (2012). Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting. Energy, 45(1), 850-858. doi:10.1016/j.energy.2012.07.006
Hong, W.-C. (2011). Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm. Energy, 36(9), 5568-5578. doi:10.1016/j.energy.2011.07.015
Nose-Filho, K., Lotufo, A. D. P., & Minussi, C. R. (2011). Short-Term Multinodal Load Forecasting Using a Modified General Regression Neural Network. IEEE Transactions on Power Delivery, 26(4), 2862-2869. doi:10.1109/tpwrd.2011.2166566
Hernández, L., Baladrón, C., Aguiar, J., Carro, B., & Sánchez-Esguevillas, A. (2012). Classification and Clustering of Electricity Demand Patterns in Industrial Parks. Energies, 5(12), 5215-5228. doi:10.3390/en5125215
Good, R. P., Kost, D., & Cherry, G. A. (2010). Introducing a Unified PCA Algorithm for Model Size Reduction. IEEE Transactions on Semiconductor Manufacturing, 23(2), 201-209. doi:10.1109/tsm.2010.2041263
Hernández, L., Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., … Gómez, J. (2012). A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework. Sensors, 12(9), 11571-11591. doi:10.3390/s120911571
Razavi, S., & Tolson, B. A. (2011). A New Formulation for Feedforward Neural Networks. IEEE Transactions on Neural Networks, 22(10), 1588-1598. doi:10.1109/tnn.2011.2163169
http://www.ree.es/sistema_electrico/pdf/indel/Atlas_INDEL_REE.pdf
Hsu, C.-C., & Chen, C.-Y. (2003). Regional load forecasting in Taiwan––applications of artificial neural networks. Energy Conversion and Management, 44(12), 1941-1949. doi:10.1016/s0196-8904(02)00225-x
[-]