Mostrar el registro sencillo del ítem
dc.contributor.author | Hernández, Luis | es_ES |
dc.contributor.author | Baladrón Zorita, Carlos | es_ES |
dc.contributor.author | Aguiar Pérez, Javier Manuel | es_ES |
dc.contributor.author | Carro Martínez, Belén | es_ES |
dc.contributor.author | Sanchez-Esguevillas, Antonio | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.date.accessioned | 2014-10-10T16:03:48Z | |
dc.date.available | 2014-10-10T16:03:48Z | |
dc.date.issued | 2013-03 | |
dc.identifier.issn | 1996-1073 | |
dc.identifier.uri | http://hdl.handle.net/10251/43123 | |
dc.description.abstract | Electricity is indispensable and of strategic importance to national economies. Consequently, electric utilities make an effort to balance power generation and demand in order to offer a good service at a competitive price. For this purpose, these utilities need electric load forecasts to be as accurate as possible. However, electric load depends on many factors (day of the week, month of the year, etc.), which makes load forecasting quite a complex process requiring something other than statistical methods. This study presents an electric load forecast architectural model based on an Artificial Neural Network (ANN) that performs Short-Term Load Forecasting (STLF). In this study, we present the excellent results obtained, and highlight the simplicity of the proposed model. Load forecasting was performed in a geographic location of the size of a potential microgrid, as microgrids appear to be the future of electric power supply. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | artificial neural network | es_ES |
dc.subject | distributed intelligence | es_ES |
dc.subject | short-term load forecasting | es_ES |
dc.subject | smart grid | es_ES |
dc.subject | microgrid | es_ES |
dc.subject | multilayer perceptron | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en6031385 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.description.bibliographicCitation | Hernández, L.; Baladrón Zorita, C.; Aguiar Pérez, JM.; Carro Martínez, B.; Sanchez-Esguevillas, A.; Lloret, J. (2013). Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks. Energies. 6(3):1385-1408. doi:10.3390/en6031385 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/en6031385 | es_ES |
dc.description.upvformatpinicio | 1385 | es_ES |
dc.description.upvformatpfin | 1408 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 265810 | |
dc.description.references | Booklets European Comission. Your Guide to the Lisbon Treaty 2009http://ec.europa.eu/publications/booklets/others/84/en.pdf | es_ES |
dc.description.references | Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., … Cook, D. (2013). A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Communications Magazine, 51(1), 106-113. doi:10.1109/mcom.2013.6400446 | es_ES |
dc.description.references | http://ec.europa.eu/energy/technology/set_plan/set_plan_en.htm | es_ES |
dc.description.references | FUTURED—Spanish Technological Platform for Energy Grids Home Pagehttp://www.futured.es/ | es_ES |
dc.description.references | European Technology Platform for Electricity Networks of the Future—SmartGrids ETP Home Pagehttp://www.smartgrids.eu/ | es_ES |
dc.description.references | Kim, H.-M., Kinoshita, T., & Shin, M.-C. (2010). A Multiagent System for Autonomous Operation of Islanded Microgrids Based on a Power Market Environment. Energies, 3(12), 1972-1990. doi:10.3390/en3121972 | es_ES |
dc.description.references | Kim, H.-M., Lim, Y., & Kinoshita, T. (2012). An Intelligent Multiagent System for Autonomous Microgrid Operation. Energies, 5(9), 3347-3362. doi:10.3390/en5093347 | es_ES |
dc.description.references | Xiao, Z., Li, T., Huang, M., Shi, J., Yang, J., Yu, J., & Wu, W. (2010). Hierarchical MAS Based Control Strategy for Microgrid. Energies, 3(9), 1622-1638. doi:10.3390/en3091622 | es_ES |
dc.description.references | Hong, Y.-Y., & Chou, J.-H. (2012). Nonintrusive Energy Monitoring for Microgrids Using Hybrid Self-Organizing Feature-Mapping Networks. Energies, 5(7), 2578-2593. doi:10.3390/en5072578 | es_ES |
dc.description.references | Douglas, A. P., Breipohl, A. M., Lee, F. N., & Adapa, R. (1998). The impacts of temperature forecast uncertainty on Bayesian load forecasting. IEEE Transactions on Power Systems, 13(4), 1507-1513. doi:10.1109/59.736298 | es_ES |
dc.description.references | Sadownik, R., & Barbosa, E. P. (1999). Short-term forecasting of industrial electricity consumption in Brazil. Journal of Forecasting, 18(3), 215-224. doi:10.1002/(sici)1099-131x(199905)18:3<215::aid-for719>3.0.co;2-b | es_ES |
dc.description.references | Huang, S. R. (1997). Short-term load forecasting using threshold autoregressive models. IEE Proceedings - Generation, Transmission and Distribution, 144(5), 477. doi:10.1049/ip-gtd:19971144 | es_ES |
dc.description.references | Infield, D. G., & Hill, D. C. (1998). Optimal smoothing for trend removal in short term electricity demand forecasting. IEEE Transactions on Power Systems, 13(3), 1115-1120. doi:10.1109/59.709108 | es_ES |
dc.description.references | Sargunaraj, S., Sen Gupta, D. P., & Devi, S. (1997). Short-term load forecasting for demand side management. IEE Proceedings - Generation, Transmission and Distribution, 144(1), 68. doi:10.1049/ip-gtd:19970599 | es_ES |
dc.description.references | Hong-Tzer Yang, & Chao-Ming Huang. (1998). A new short-term load forecasting approach using self-organizing fuzzy ARMAX models. IEEE Transactions on Power Systems, 13(1), 217-225. doi:10.1109/59.651639 | es_ES |
dc.description.references | Hong-Tzer Yang, Chao-Ming Huang, & Ching-Lien Huang. (1996). Identification of ARMAX model for short term load forecasting: an evolutionary programming approach. IEEE Transactions on Power Systems, 11(1), 403-408. doi:10.1109/59.486125 | es_ES |
dc.description.references | Yu, Z. (1996). A temperature match based optimization method for daily load prediction considering DLC effect. IEEE Transactions on Power Systems, 11(2), 728-733. doi:10.1109/59.496146 | es_ES |
dc.description.references | Charytoniuk, W., Chen, M. S., & Van Olinda, P. (1998). Nonparametric regression based short-term load forecasting. IEEE Transactions on Power Systems, 13(3), 725-730. doi:10.1109/59.708572 | es_ES |
dc.description.references | Taylor, J. W., & Majithia, S. (2000). Using combined forecasts with changing weights for electricity demand profiling. Journal of the Operational Research Society, 51(1), 72-82. doi:10.1057/palgrave.jors.2600856 | es_ES |
dc.description.references | Ramanathan, R., Engle, R., Granger, C. W. J., Vahid-Araghi, F., & Brace, C. (1997). Short-run forecasts of electricity loads and peaks. International Journal of Forecasting, 13(2), 161-174. doi:10.1016/s0169-2070(97)00015-0 | es_ES |
dc.description.references | Soliman, S. A., Persaud, S., El-Nagar, K., & El-Hawary, M. E. (1997). Application of least absolute value parameter estimation based on linear programming to short-term load forecasting. International Journal of Electrical Power & Energy Systems, 19(3), 209-216. doi:10.1016/s0142-0615(96)00048-8 | es_ES |
dc.description.references | Hyde, O., & Hodnett, P. F. (1997). An adaptable automated procedure for short-term electricity load forecasting. IEEE Transactions on Power Systems, 12(1), 84-94. doi:10.1109/59.574927 | es_ES |
dc.description.references | Ku-Long Ho, Yuan-Yih Hsu, Chuan-Fu Chen, Tzong-En Lee, Chih-Chien Liang, Tsau-Shin Lai, & Kung-Keng Chen. (1990). Short term load forecasting of Taiwan power system using a knowledge-based expert system. IEEE Transactions on Power Systems, 5(4), 1214-1221. doi:10.1109/59.99372 | es_ES |
dc.description.references | Rahman, S., & Hazim, O. (1993). A generalized knowledge-based short-term load-forecasting technique. IEEE Transactions on Power Systems, 8(2), 508-514. doi:10.1109/59.260833 | es_ES |
dc.description.references | Mori, H., & Kobayashi, H. (1996). Optimal fuzzy inference for short-term load forecasting. IEEE Transactions on Power Systems, 11(1), 390-396. doi:10.1109/59.486123 | es_ES |
dc.description.references | Bakirtzis, A. G., Theocharis, J. B., Kiartzis, S. J., & Satsios, K. J. (1995). Short term load forecasting using fuzzy neural networks. IEEE Transactions on Power Systems, 10(3), 1518-1524. doi:10.1109/59.466494 | es_ES |
dc.description.references | Papadakis, S. E., Theocharis, J. B., Kiartzis, S. J., & Bakirtzis, A. G. (1998). A novel approach to short-term load forecasting using fuzzy neural networks. IEEE Transactions on Power Systems, 13(2), 480-492. doi:10.1109/59.667372 | es_ES |
dc.description.references | Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2), 179-211. doi:10.1207/s15516709cog1402_1 | es_ES |
dc.description.references | Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7(2-3), 195-225. doi:10.1007/bf00114844 | es_ES |
dc.description.references | Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464-1480. doi:10.1109/5.58325 | es_ES |
dc.description.references | Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., & Hernández, L. (2012). Performance Study of the Application of Artificial Neural Networks to the Completion and Prediction of Data Retrieved by Underwater Sensors. Sensors, 12(2), 1468-1481. doi:10.3390/s120201468 | es_ES |
dc.description.references | Martínez-Martínez, V., Baladrón, C., Gomez-Gil, J., Ruiz-Ruiz, G., Navas-Gracia, L. M., Aguiar, J. M., & Carro, B. (2012). Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks. Sensors, 12(10), 14004-14021. doi:10.3390/s121014004 | es_ES |
dc.description.references | Park, D. C., El-Sharkawi, M. A., Marks, R. J., Atlas, L. E., & Damborg, M. J. (1991). Electric load forecasting using an artificial neural network. IEEE Transactions on Power Systems, 6(2), 442-449. doi:10.1109/59.76685 | es_ES |
dc.description.references | Ho, K. L., Hsu, Y.-Y., & Yang, C.-C. (1992). Short term load forecasting using a multilayer neural network with an adaptive learning algorithm. IEEE Transactions on Power Systems, 7(1), 141-149. doi:10.1109/59.141697 | es_ES |
dc.description.references | Drezga, I., & Rahman, S. (1998). Input variable selection for ANN-based short-term load forecasting. IEEE Transactions on Power Systems, 13(4), 1238-1244. doi:10.1109/59.736244 | es_ES |
dc.description.references | Drezga, I., & Rahman, S. (1999). Short-term load forecasting with local ANN predictors. IEEE Transactions on Power Systems, 14(3), 844-850. doi:10.1109/59.780894 | es_ES |
dc.description.references | Lee, K. Y., Cha, Y. T., & Park, J. H. (1992). Short-term load forecasting using an artificial neural network. IEEE Transactions on Power Systems, 7(1), 124-132. doi:10.1109/59.141695 | es_ES |
dc.description.references | Lu, C.-N., Wu, H.-T., & Vemuri, S. (1993). Neural network based short term load forecasting. IEEE Transactions on Power Systems, 8(1), 336-342. doi:10.1109/59.221223 | es_ES |
dc.description.references | Papalexopoulos, A. D., Shangyou Hao, & Tie-Mao Peng. (1994). An implementation of a neural network based load forecasting model for the EMS. IEEE Transactions on Power Systems, 9(4), 1956-1962. doi:10.1109/59.331456 | es_ES |
dc.description.references | Bakirtzls, A. G., Petridls, V., Klartzis, S. J., Alexladls, M. C., & Malssls, A. H. (1996). A neural network short term load forecasting model for the Greek power system. IEEE Transactions on Power Systems, 11(2), 858-863. doi:10.1109/59.496166 | es_ES |
dc.description.references | AlFuhaid, A. S., El-Sayed, M. A., & Mahmoud, M. S. (1997). Cascaded artificial neural networks for short-term load forecasting. IEEE Transactions on Power Systems, 12(4), 1524-1529. doi:10.1109/59.627852 | es_ES |
dc.description.references | Lamedica, R., Prudenzi, A., Sforna, M., Caciotta, M., & Cencellli, V. O. (1996). A neural network based technique for short-term forecasting of anomalous load periods. IEEE Transactions on Power Systems, 11(4), 1749-1756. doi:10.1109/59.544638 | es_ES |
dc.description.references | Srinivasan, D. (1994). Forecasting daily load curves using a hybrid fuzzy-neural approach. IEE Proceedings - Generation, Transmission and Distribution, 141(6), 561. doi:10.1049/ip-gtd:19941288 | es_ES |
dc.description.references | Kwang-Ho Kim, Jong-Keun Park, Kab-Ju Hwang, & Sung-Hak Kim. (1995). Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems. IEEE Transactions on Power Systems, 10(3), 1534-1539. doi:10.1109/59.466492 | es_ES |
dc.description.references | Daneshdoost, M., Lotfalian, M., Bumroonggit, G., & Ngoy, J. P. (1998). Neural network with fuzzy set-based classification for short-term load forecasting. IEEE Transactions on Power Systems, 13(4), 1386-1391. doi:10.1109/59.736281 | es_ES |
dc.description.references | Senjyu, T., Mandal, P., Uezato, K., & Funabashi, T. (2005). Next Day Load Curve Forecasting Using Hybrid Correction Method. IEEE Transactions on Power Systems, 20(1), 102-109. doi:10.1109/tpwrs.2004.831256 | es_ES |
dc.description.references | Hsu, Y.-Y., & Yang, C.-C. (1991). Design of artificial neural networks for short-term load forecasting. Part 2: Multilayer feedforward networks for peak load and valley load forecasting. IEE Proceedings C Generation, Transmission and Distribution, 138(5), 414. doi:10.1049/ip-c.1991.0052 | es_ES |
dc.description.references | Rejc, M., & Pantos, M. (2011). Short-Term Transmission-Loss Forecast for the Slovenian Transmission Power System Based on a Fuzzy-Logic Decision Approach. IEEE Transactions on Power Systems, 26(3), 1511-1521. doi:10.1109/tpwrs.2010.2096829 | es_ES |
dc.description.references | Wang, Y., Xia, Q., & Kang, C. (2011). Secondary Forecasting Based on Deviation Analysis for Short-Term Load Forecasting. IEEE Transactions on Power Systems, 26(2), 500-507. doi:10.1109/tpwrs.2010.2052638 | es_ES |
dc.description.references | Kebriaei, H., Araabi, B. N., & Rahimi-Kian, A. (2011). Short-Term Load Forecasting With a New Nonsymmetric Penalty Function. IEEE Transactions on Power Systems, 26(4), 1817-1825. doi:10.1109/tpwrs.2011.2142330 | es_ES |
dc.description.references | Bishop, C. M. (1994). Neural networks and their applications. Review of Scientific Instruments, 65(6), 1803-1832. doi:10.1063/1.1144830 | es_ES |
dc.description.references | Taylor, J. W., & Buizza, R. (2002). Neural network load forecasting with weather ensemble predictions. IEEE Transactions on Power Systems, 17(3), 626-632. doi:10.1109/tpwrs.2002.800906 | es_ES |
dc.description.references | Chu, W.-C., Chen, Y.-P., Xu, Z.-W., & Lee, W.-J. (2011). Multiregion Short-Term Load Forecasting in Consideration of HI and Load/Weather Diversity. IEEE Transactions on Industry Applications, 47(1), 232-237. doi:10.1109/tia.2010.2090440 | es_ES |
dc.description.references | Zhang, W. Y., Hong, W.-C., Dong, Y., Tsai, G., Sung, J.-T., & Fan, G. (2012). Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting. Energy, 45(1), 850-858. doi:10.1016/j.energy.2012.07.006 | es_ES |
dc.description.references | Hong, W.-C. (2011). Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm. Energy, 36(9), 5568-5578. doi:10.1016/j.energy.2011.07.015 | es_ES |
dc.description.references | Nose-Filho, K., Lotufo, A. D. P., & Minussi, C. R. (2011). Short-Term Multinodal Load Forecasting Using a Modified General Regression Neural Network. IEEE Transactions on Power Delivery, 26(4), 2862-2869. doi:10.1109/tpwrd.2011.2166566 | es_ES |
dc.description.references | Hernández, L., Baladrón, C., Aguiar, J., Carro, B., & Sánchez-Esguevillas, A. (2012). Classification and Clustering of Electricity Demand Patterns in Industrial Parks. Energies, 5(12), 5215-5228. doi:10.3390/en5125215 | es_ES |
dc.description.references | Good, R. P., Kost, D., & Cherry, G. A. (2010). Introducing a Unified PCA Algorithm for Model Size Reduction. IEEE Transactions on Semiconductor Manufacturing, 23(2), 201-209. doi:10.1109/tsm.2010.2041263 | es_ES |
dc.description.references | Hernández, L., Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., … Gómez, J. (2012). A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework. Sensors, 12(9), 11571-11591. doi:10.3390/s120911571 | es_ES |
dc.description.references | Razavi, S., & Tolson, B. A. (2011). A New Formulation for Feedforward Neural Networks. IEEE Transactions on Neural Networks, 22(10), 1588-1598. doi:10.1109/tnn.2011.2163169 | es_ES |
dc.description.references | http://www.ree.es/sistema_electrico/pdf/indel/Atlas_INDEL_REE.pdf | es_ES |
dc.description.references | Hsu, C.-C., & Chen, C.-Y. (2003). Regional load forecasting in Taiwan––applications of artificial neural networks. Energy Conversion and Management, 44(12), 1941-1949. doi:10.1016/s0196-8904(02)00225-x | es_ES |