- -

Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation

Mostrar el registro completo del ítem

Trujillo Guillen, M.; Berjano, E. (2013). Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation. International Journal of Hyperthermia. 29(6):590-597. https://doi.org/10.3109/02656736.2013.807438

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43238

Ficheros en el ítem

Metadatos del ítem

Título: Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation
Autor: Trujillo Guillen, Macarena Berjano, Enrique
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
Purpose: Although theoretical modelling is widely used to study different aspects of radiofrequency ablation (RFA), its utility is directly related to its realism. An important factor in this realism is the use of mathematical ...[+]
Palabras clave: Tissue characteristics , Theoretical modelling , Thermal conductivity , Radiofrequency ablation , Electrical conductivity
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Hyperthermia. (issn: 0265-6736 )
DOI: 10.3109/02656736.2013.807438
Editorial:
Informa Healthcare
Versión del editor: http://dx.doi.org/10.3109/02656736.2013.807438
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-01/ES/MODELADO TEORICO Y EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIAS/
info:eu-repo/grantAgreement/UPV//PAID-06-11/
Agradecimientos:
This work received financial support from the Spanish Plan Nacional de I þ D þ I del Ministerio de Ciencia e Innovacio´n, grant no. TEC2011-27133-C02-01, and from the PAID-06-11 UPV, grant ref. 1988. The authors alone ...[+]
Tipo: Reseña

References

Radiofrequency ablation in liver tumours. (2004). Annals of Oncology, 15(suppl_4), iv313-iv317. doi:10.1093/annonc/mdh945

McAchran, S. E., Lesani, O. A., & Resnick, M. I. (2005). Radiofrequency ablation of renal tumors: Past, present, and future. Urology, 66(5), 15-22. doi:10.1016/j.urology.2005.06.127

Di Staso, M., Zugaro, L., Gravina, G. L., Bonfili, P., Marampon, F., Di Nicola, L., … Tombolini, V. (2011). A feasibility study of percutaneous radiofrequency ablation followed by radiotherapy in the management of painful osteolytic bone metastases. European Radiology, 21(9), 2004-2010. doi:10.1007/s00330-011-2133-3 [+]
Radiofrequency ablation in liver tumours. (2004). Annals of Oncology, 15(suppl_4), iv313-iv317. doi:10.1093/annonc/mdh945

McAchran, S. E., Lesani, O. A., & Resnick, M. I. (2005). Radiofrequency ablation of renal tumors: Past, present, and future. Urology, 66(5), 15-22. doi:10.1016/j.urology.2005.06.127

Di Staso, M., Zugaro, L., Gravina, G. L., Bonfili, P., Marampon, F., Di Nicola, L., … Tombolini, V. (2011). A feasibility study of percutaneous radiofrequency ablation followed by radiotherapy in the management of painful osteolytic bone metastases. European Radiology, 21(9), 2004-2010. doi:10.1007/s00330-011-2133-3

Sharma, R., Wagner, J. L., & Hwang, R. F. (2011). Ablative Therapies of the Breast. Surgical Oncology Clinics of North America, 20(2), 317-339. doi:10.1016/j.soc.2010.11.003

Savoie, P.-H., Lopez, L., Simonin, O., Loubat, M., Bladou, F., Serment, G., & Karsenty, G. (2009). Résultat à deux ans de la thermothérapie prostatique par radiofréquence pour troubles mictionnels liés à l’HBP. Progrès en Urologie, 19(7), 501-506. doi:10.1016/j.purol.2009.03.004

Akeboshi, M., Yamakado, K., Nakatsuka, A., Hataji, O., Taguchi, O., Takao, M., & Takeda, K. (2004). Percutaneous Radiofrequency Ablation of Lung Neoplasms: Initial Therapeutic Response. Journal of Vascular and Interventional Radiology, 15(5), 463-470. doi:10.1097/01.rvi.0000126812.12853.77

Berjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24

Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754

Shahidi, A. V., & Savard, P. (1994). A finite element model for radiofrequency ablation of the myocardium. IEEE Transactions on Biomedical Engineering, 41(10), 963-968. doi:10.1109/10.324528

Solazzo, S. A., Liu, Z., Lobo, S. M., Ahmed, M., Hines-Peralta, A. U., Lenkinski, R. E., & Goldberg, S. N. (2005). Radiofrequency Ablation: Importance of Background Tissue Electrical Conductivity—An Agar Phantom and Computer Modeling Study. Radiology, 236(2), 495-502. doi:10.1148/radiol.2362040965

Gabriel, C., Gabriel, S., & Corthout, E. (1996). The dielectric properties of biological tissues: I. Literature survey. Physics in Medicine and Biology, 41(11), 2231-2249. doi:10.1088/0031-9155/41/11/001

Jo, B., & Aksan, A. (2010). Prediction of the extent of thermal damage in the cornea during conductive keratoplasty. Journal of Thermal Biology, 35(4), 167-174. doi:10.1016/j.jtherbio.2010.02.004

Haemmerich, D., Chachati, L., Wright, A. S., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 50(4), 493-500. doi:10.1109/tbme.2003.809488

Jarrard, J., Wizeman, B., Brown, R. H., & Mitzner, W. (2010). A theoretical model of the application of RF energy to the airway wall and its experimental validation. BioMedical Engineering OnLine, 9(1), 81. doi:10.1186/1475-925x-9-81

Dodde, R. E., Miller, S. F., Geiger, J. D., & Shih, A. J. (2008). Thermal-Electric Finite Element Analysis and Experimental Validation of Bipolar Electrosurgical Cautery. Journal of Manufacturing Science and Engineering, 130(2). doi:10.1115/1.2902858

LAU, M., HU, B., WERNETH, R., SHERMAN, M., ORAL, H., MORADY, F., & KRYSL, P. (2010). A Theoretical and Experimental Analysis of Radiofrequency Ablation with a Multielectrode, Phased, Duty-Cycled System. Pacing and Clinical Electrophysiology, 33(9), 1089-1100. doi:10.1111/j.1540-8159.2010.02801.x

Berjano, E. J., Alió, J. L., & Saiz, J. (2005). Modeling for radio-frequency conductive keratoplasty: implications for the maximum temperature reached in the cornea. Physiological Measurement, 26(3), 157-172. doi:10.1088/0967-3334/26/3/002

Pätz, T., Kröger, T., & Preusser, T. (2009). Simulation of Radiofrequency Ablation Including Water Evaporation. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, 1287-1290. doi:10.1007/978-3-642-03882-2_341

Jain, M. K., & Wolf, P. D. (2000). A Three-Dimensional Finite Element Model of Radiofrequency Ablation with Blood Flow and its Experimental Validation. Annals of Biomedical Engineering, 28(9), 1075-1084. doi:10.1114/1.1310219

Chang, I. A., & Nguyen, U. D. (2004). BioMedical Engineering OnLine, 3(1), 27. doi:10.1186/1475-925x-3-27

Yang, D., Converse, M. C., Mahvi, D. M., & Webster, J. G. (2007). Expanding the Bioheat Equation to Include Tissue Internal Water Evaporation During Heating. IEEE Transactions on Biomedical Engineering, 54(8), 1382-1388. doi:10.1109/tbme.2007.890740

Bhavaraju, N. C., & Valvano, J. W. (1999). International Journal of Thermophysics, 20(2), 665-676. doi:10.1023/a:1022673524963

Baldwin, S. A., Pelman, A., & Bert, J. L. (2001). A Heat Transfer Model of Thermal Balloon Endometrial Ablation. Annals of Biomedical Engineering, 29(11), 1009-1018. doi:10.1114/1.1415521

Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045

Pennes, H. H. (1998). Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. Journal of Applied Physiology, 85(1), 5-34. doi:10.1152/jappl.1998.85.1.5

Pearce, J., Panescu, D., & Thomsen, S. (2005). Simulation of diopter changes in radio frequency conductive keratoplasty in the cornea. Modelling in Medicine and Biology VI. doi:10.2495/bio050451

Zhao, G., Zhang, H.-F., Guo, X.-J., Luo, D.-W., & Gao, D.-Y. (2007). Effect of blood flow and metabolism on multidimensional heat transfer during cryosurgery. Medical Engineering & Physics, 29(2), 205-215. doi:10.1016/j.medengphy.2006.03.005

Berjano, E. J., Burdío, F., Navarro, A. C., Burdío, J. M., Güemes, A., Aldana, O., … Gregorio, M. A. de. (2006). Improved perfusion system for bipolar radiofrequency ablation of liver: preliminary findings from a computer modeling study. Physiological Measurement, 27(10), N55-N66. doi:10.1088/0967-3334/27/10/n03

Trujillo, M., Alba, J., & Berjano, E. (2012). Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes. International Journal of Hyperthermia, 28(1), 62-68. doi:10.3109/02656736.2011.631076

Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107

Chang, S.-J., Yu, W.-J., Chang, C.-C., & Chen, Y.-H. (2010). 7 PROTEOMICS ANALYSIS OF MALE REPRODUCTIVE PHYSIOLOGY BY TOONA SINENSIS ROEM. Reproductive BioMedicine Online, 20, S3-S4. doi:10.1016/s1472-6483(10)62425-x

Beop-Min Kim, Jacques, S. L., Rastegar, S., Thomsen, S., & Motamedi, M. (1996). Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue. IEEE Journal of Selected Topics in Quantum Electronics, 2(4), 922-933. doi:10.1109/2944.577317

Berjano, E. J., Saiz, J., & Ferrero, J. M. (2002). Radio-frequency heating of the cornea: theoretical model and in vitro experiments. IEEE Transactions on Biomedical Engineering, 49(3), 196-205. doi:10.1109/10.983453

Barauskas, R., Gulbinas, A., & Barauskas, G. (2007). Investigation of radiofrequency ablation process in liver tissue by finite element modeling and experiment. Medicina, 43(4), 310. doi:10.3390/medicina43040039

Ji, Z., & Brace, C. L. (2011). Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation. Physics in Medicine and Biology, 56(16), 5249-5264. doi:10.1088/0031-9155/56/16/011

Labonte, S. (1994). Numerical model for radio-frequency ablation of the endocardium and its experimental validation. IEEE Transactions on Biomedical Engineering, 41(2), 108-115. doi:10.1109/10.284921

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem