- -

Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trujillo Guillen, Macarena es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.date.accessioned 2014-10-14T10:55:27Z
dc.date.available 2014-10-14T10:55:27Z
dc.date.issued 2013-09
dc.identifier.issn 0265-6736
dc.identifier.uri http://hdl.handle.net/10251/43238
dc.description.abstract Purpose: Although theoretical modelling is widely used to study different aspects of radiofrequency ablation (RFA), its utility is directly related to its realism. An important factor in this realism is the use of mathematical functions to model the temperature dependence of thermal (k) and electrical (sigma) conductivities of tissue. Our aim was to review the piecewise mathematical functions most commonly used for modelling the temperature dependence of k and sigma in RFA computational modelling. Materials and methods: We built a hepatic RFA theoretical model of a cooled electrode and compared lesion dimensions and impedance evolution with combinations of mathematical functions proposed in previous studies. We employed the thermal damage contour D63 to compute the lesion dimension contour, which corresponds to Omega = 1, Omega being local thermal damage assessed by the Arrhenius damage model. Results: The results were very similar in all cases in terms of impedance evolution and lesion size after 6 min of ablation. Although the relative differences between cases in terms of time to first roll-off (abrupt increase in impedance) were as much as 12%, the maximum relative differences in terms of the short lesion (transverse) diameter were below 3.5%. Conclusions: The findings suggest that the different methods of modelling temperature dependence of k and sigma reported in the literature do not significantly affect the computed lesion diameter. es_ES
dc.description.sponsorship This work received financial support from the Spanish Plan Nacional de I þ D þ I del Ministerio de Ciencia e Innovacio´n, grant no. TEC2011-27133-C02-01, and from the PAID-06-11 UPV, grant ref. 1988. The authors alone are responsible for the content and writing of the paper.
dc.language Inglés es_ES
dc.publisher Informa Healthcare es_ES
dc.relation.ispartof International Journal of Hyperthermia es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Tissue characteristics es_ES
dc.subject Theoretical modelling es_ES
dc.subject Thermal conductivity es_ES
dc.subject Radiofrequency ablation es_ES
dc.subject Electrical conductivity es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation es_ES
dc.type Reseña es_ES
dc.identifier.doi 10.3109/02656736.2013.807438
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-01/ES/MODELADO TEORICO Y EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-11/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Trujillo Guillen, M.; Berjano, E. (2013). Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation. International Journal of Hyperthermia. 29(6):590-597. https://doi.org/10.3109/02656736.2013.807438 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3109/02656736.2013.807438 es_ES
dc.description.upvformatpinicio 590 es_ES
dc.description.upvformatpfin 597 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 255198
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Universitat Politècnica de València
dc.description.references Radiofrequency ablation in liver tumours. (2004). Annals of Oncology, 15(suppl_4), iv313-iv317. doi:10.1093/annonc/mdh945 es_ES
dc.description.references McAchran, S. E., Lesani, O. A., & Resnick, M. I. (2005). Radiofrequency ablation of renal tumors: Past, present, and future. Urology, 66(5), 15-22. doi:10.1016/j.urology.2005.06.127 es_ES
dc.description.references Di Staso, M., Zugaro, L., Gravina, G. L., Bonfili, P., Marampon, F., Di Nicola, L., … Tombolini, V. (2011). A feasibility study of percutaneous radiofrequency ablation followed by radiotherapy in the management of painful osteolytic bone metastases. European Radiology, 21(9), 2004-2010. doi:10.1007/s00330-011-2133-3 es_ES
dc.description.references Sharma, R., Wagner, J. L., & Hwang, R. F. (2011). Ablative Therapies of the Breast. Surgical Oncology Clinics of North America, 20(2), 317-339. doi:10.1016/j.soc.2010.11.003 es_ES
dc.description.references Savoie, P.-H., Lopez, L., Simonin, O., Loubat, M., Bladou, F., Serment, G., & Karsenty, G. (2009). Résultat à deux ans de la thermothérapie prostatique par radiofréquence pour troubles mictionnels liés à l’HBP. Progrès en Urologie, 19(7), 501-506. doi:10.1016/j.purol.2009.03.004 es_ES
dc.description.references Akeboshi, M., Yamakado, K., Nakatsuka, A., Hataji, O., Taguchi, O., Takao, M., & Takeda, K. (2004). Percutaneous Radiofrequency Ablation of Lung Neoplasms: Initial Therapeutic Response. Journal of Vascular and Interventional Radiology, 15(5), 463-470. doi:10.1097/01.rvi.0000126812.12853.77 es_ES
dc.description.references Berjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24 es_ES
dc.description.references Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754 es_ES
dc.description.references Shahidi, A. V., & Savard, P. (1994). A finite element model for radiofrequency ablation of the myocardium. IEEE Transactions on Biomedical Engineering, 41(10), 963-968. doi:10.1109/10.324528 es_ES
dc.description.references Solazzo, S. A., Liu, Z., Lobo, S. M., Ahmed, M., Hines-Peralta, A. U., Lenkinski, R. E., & Goldberg, S. N. (2005). Radiofrequency Ablation: Importance of Background Tissue Electrical Conductivity—An Agar Phantom and Computer Modeling Study. Radiology, 236(2), 495-502. doi:10.1148/radiol.2362040965 es_ES
dc.description.references Gabriel, C., Gabriel, S., & Corthout, E. (1996). The dielectric properties of biological tissues: I. Literature survey. Physics in Medicine and Biology, 41(11), 2231-2249. doi:10.1088/0031-9155/41/11/001 es_ES
dc.description.references Jo, B., & Aksan, A. (2010). Prediction of the extent of thermal damage in the cornea during conductive keratoplasty. Journal of Thermal Biology, 35(4), 167-174. doi:10.1016/j.jtherbio.2010.02.004 es_ES
dc.description.references Haemmerich, D., Chachati, L., Wright, A. S., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 50(4), 493-500. doi:10.1109/tbme.2003.809488 es_ES
dc.description.references Jarrard, J., Wizeman, B., Brown, R. H., & Mitzner, W. (2010). A theoretical model of the application of RF energy to the airway wall and its experimental validation. BioMedical Engineering OnLine, 9(1), 81. doi:10.1186/1475-925x-9-81 es_ES
dc.description.references Dodde, R. E., Miller, S. F., Geiger, J. D., & Shih, A. J. (2008). Thermal-Electric Finite Element Analysis and Experimental Validation of Bipolar Electrosurgical Cautery. Journal of Manufacturing Science and Engineering, 130(2). doi:10.1115/1.2902858 es_ES
dc.description.references LAU, M., HU, B., WERNETH, R., SHERMAN, M., ORAL, H., MORADY, F., & KRYSL, P. (2010). A Theoretical and Experimental Analysis of Radiofrequency Ablation with a Multielectrode, Phased, Duty-Cycled System. Pacing and Clinical Electrophysiology, 33(9), 1089-1100. doi:10.1111/j.1540-8159.2010.02801.x es_ES
dc.description.references Berjano, E. J., Alió, J. L., & Saiz, J. (2005). Modeling for radio-frequency conductive keratoplasty: implications for the maximum temperature reached in the cornea. Physiological Measurement, 26(3), 157-172. doi:10.1088/0967-3334/26/3/002 es_ES
dc.description.references Pätz, T., Kröger, T., & Preusser, T. (2009). Simulation of Radiofrequency Ablation Including Water Evaporation. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, 1287-1290. doi:10.1007/978-3-642-03882-2_341 es_ES
dc.description.references Jain, M. K., & Wolf, P. D. (2000). A Three-Dimensional Finite Element Model of Radiofrequency Ablation with Blood Flow and its Experimental Validation. Annals of Biomedical Engineering, 28(9), 1075-1084. doi:10.1114/1.1310219 es_ES
dc.description.references Chang, I. A., & Nguyen, U. D. (2004). BioMedical Engineering OnLine, 3(1), 27. doi:10.1186/1475-925x-3-27 es_ES
dc.description.references Yang, D., Converse, M. C., Mahvi, D. M., & Webster, J. G. (2007). Expanding the Bioheat Equation to Include Tissue Internal Water Evaporation During Heating. IEEE Transactions on Biomedical Engineering, 54(8), 1382-1388. doi:10.1109/tbme.2007.890740 es_ES
dc.description.references Bhavaraju, N. C., & Valvano, J. W. (1999). International Journal of Thermophysics, 20(2), 665-676. doi:10.1023/a:1022673524963 es_ES
dc.description.references Baldwin, S. A., Pelman, A., & Bert, J. L. (2001). A Heat Transfer Model of Thermal Balloon Endometrial Ablation. Annals of Biomedical Engineering, 29(11), 1009-1018. doi:10.1114/1.1415521 es_ES
dc.description.references Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045 es_ES
dc.description.references Pennes, H. H. (1998). Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. Journal of Applied Physiology, 85(1), 5-34. doi:10.1152/jappl.1998.85.1.5 es_ES
dc.description.references Pearce, J., Panescu, D., & Thomsen, S. (2005). Simulation of diopter changes in radio frequency conductive keratoplasty in the cornea. Modelling in Medicine and Biology VI. doi:10.2495/bio050451 es_ES
dc.description.references Zhao, G., Zhang, H.-F., Guo, X.-J., Luo, D.-W., & Gao, D.-Y. (2007). Effect of blood flow and metabolism on multidimensional heat transfer during cryosurgery. Medical Engineering & Physics, 29(2), 205-215. doi:10.1016/j.medengphy.2006.03.005 es_ES
dc.description.references Berjano, E. J., Burdío, F., Navarro, A. C., Burdío, J. M., Güemes, A., Aldana, O., … Gregorio, M. A. de. (2006). Improved perfusion system for bipolar radiofrequency ablation of liver: preliminary findings from a computer modeling study. Physiological Measurement, 27(10), N55-N66. doi:10.1088/0967-3334/27/10/n03 es_ES
dc.description.references Trujillo, M., Alba, J., & Berjano, E. (2012). Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes. International Journal of Hyperthermia, 28(1), 62-68. doi:10.3109/02656736.2011.631076 es_ES
dc.description.references Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107 es_ES
dc.description.references Chang, S.-J., Yu, W.-J., Chang, C.-C., & Chen, Y.-H. (2010). 7 PROTEOMICS ANALYSIS OF MALE REPRODUCTIVE PHYSIOLOGY BY TOONA SINENSIS ROEM. Reproductive BioMedicine Online, 20, S3-S4. doi:10.1016/s1472-6483(10)62425-x es_ES
dc.description.references Beop-Min Kim, Jacques, S. L., Rastegar, S., Thomsen, S., & Motamedi, M. (1996). Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue. IEEE Journal of Selected Topics in Quantum Electronics, 2(4), 922-933. doi:10.1109/2944.577317 es_ES
dc.description.references Berjano, E. J., Saiz, J., & Ferrero, J. M. (2002). Radio-frequency heating of the cornea: theoretical model and in vitro experiments. IEEE Transactions on Biomedical Engineering, 49(3), 196-205. doi:10.1109/10.983453 es_ES
dc.description.references Barauskas, R., Gulbinas, A., & Barauskas, G. (2007). Investigation of radiofrequency ablation process in liver tissue by finite element modeling and experiment. Medicina, 43(4), 310. doi:10.3390/medicina43040039 es_ES
dc.description.references Ji, Z., & Brace, C. L. (2011). Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation. Physics in Medicine and Biology, 56(16), 5249-5264. doi:10.1088/0031-9155/56/16/011 es_ES
dc.description.references Labonte, S. (1994). Numerical model for radio-frequency ablation of the endocardium and its experimental validation. IEEE Transactions on Biomedical Engineering, 41(2), 108-115. doi:10.1109/10.284921 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem