Mostrar el registro sencillo del ítem
dc.contributor.author | Trujillo Guillen, Macarena | es_ES |
dc.contributor.author | Berjano, Enrique | es_ES |
dc.date.accessioned | 2014-10-14T10:55:27Z | |
dc.date.available | 2014-10-14T10:55:27Z | |
dc.date.issued | 2013-09 | |
dc.identifier.issn | 0265-6736 | |
dc.identifier.uri | http://hdl.handle.net/10251/43238 | |
dc.description.abstract | Purpose: Although theoretical modelling is widely used to study different aspects of radiofrequency ablation (RFA), its utility is directly related to its realism. An important factor in this realism is the use of mathematical functions to model the temperature dependence of thermal (k) and electrical (sigma) conductivities of tissue. Our aim was to review the piecewise mathematical functions most commonly used for modelling the temperature dependence of k and sigma in RFA computational modelling. Materials and methods: We built a hepatic RFA theoretical model of a cooled electrode and compared lesion dimensions and impedance evolution with combinations of mathematical functions proposed in previous studies. We employed the thermal damage contour D63 to compute the lesion dimension contour, which corresponds to Omega = 1, Omega being local thermal damage assessed by the Arrhenius damage model. Results: The results were very similar in all cases in terms of impedance evolution and lesion size after 6 min of ablation. Although the relative differences between cases in terms of time to first roll-off (abrupt increase in impedance) were as much as 12%, the maximum relative differences in terms of the short lesion (transverse) diameter were below 3.5%. Conclusions: The findings suggest that the different methods of modelling temperature dependence of k and sigma reported in the literature do not significantly affect the computed lesion diameter. | es_ES |
dc.description.sponsorship | This work received financial support from the Spanish Plan Nacional de I þ D þ I del Ministerio de Ciencia e Innovacio´n, grant no. TEC2011-27133-C02-01, and from the PAID-06-11 UPV, grant ref. 1988. The authors alone are responsible for the content and writing of the paper. | |
dc.language | Inglés | es_ES |
dc.publisher | Informa Healthcare | es_ES |
dc.relation.ispartof | International Journal of Hyperthermia | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Tissue characteristics | es_ES |
dc.subject | Theoretical modelling | es_ES |
dc.subject | Thermal conductivity | es_ES |
dc.subject | Radiofrequency ablation | es_ES |
dc.subject | Electrical conductivity | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation | es_ES |
dc.type | Reseña | es_ES |
dc.identifier.doi | 10.3109/02656736.2013.807438 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-01/ES/MODELADO TEORICO Y EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-11/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Trujillo Guillen, M.; Berjano, E. (2013). Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation. International Journal of Hyperthermia. 29(6):590-597. https://doi.org/10.3109/02656736.2013.807438 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3109/02656736.2013.807438 | es_ES |
dc.description.upvformatpinicio | 590 | es_ES |
dc.description.upvformatpfin | 597 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 255198 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.description.references | Radiofrequency ablation in liver tumours. (2004). Annals of Oncology, 15(suppl_4), iv313-iv317. doi:10.1093/annonc/mdh945 | es_ES |
dc.description.references | McAchran, S. E., Lesani, O. A., & Resnick, M. I. (2005). Radiofrequency ablation of renal tumors: Past, present, and future. Urology, 66(5), 15-22. doi:10.1016/j.urology.2005.06.127 | es_ES |
dc.description.references | Di Staso, M., Zugaro, L., Gravina, G. L., Bonfili, P., Marampon, F., Di Nicola, L., … Tombolini, V. (2011). A feasibility study of percutaneous radiofrequency ablation followed by radiotherapy in the management of painful osteolytic bone metastases. European Radiology, 21(9), 2004-2010. doi:10.1007/s00330-011-2133-3 | es_ES |
dc.description.references | Sharma, R., Wagner, J. L., & Hwang, R. F. (2011). Ablative Therapies of the Breast. Surgical Oncology Clinics of North America, 20(2), 317-339. doi:10.1016/j.soc.2010.11.003 | es_ES |
dc.description.references | Savoie, P.-H., Lopez, L., Simonin, O., Loubat, M., Bladou, F., Serment, G., & Karsenty, G. (2009). Résultat à deux ans de la thermothérapie prostatique par radiofréquence pour troubles mictionnels liés à l’HBP. Progrès en Urologie, 19(7), 501-506. doi:10.1016/j.purol.2009.03.004 | es_ES |
dc.description.references | Akeboshi, M., Yamakado, K., Nakatsuka, A., Hataji, O., Taguchi, O., Takao, M., & Takeda, K. (2004). Percutaneous Radiofrequency Ablation of Lung Neoplasms: Initial Therapeutic Response. Journal of Vascular and Interventional Radiology, 15(5), 463-470. doi:10.1097/01.rvi.0000126812.12853.77 | es_ES |
dc.description.references | Berjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24 | es_ES |
dc.description.references | Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754 | es_ES |
dc.description.references | Shahidi, A. V., & Savard, P. (1994). A finite element model for radiofrequency ablation of the myocardium. IEEE Transactions on Biomedical Engineering, 41(10), 963-968. doi:10.1109/10.324528 | es_ES |
dc.description.references | Solazzo, S. A., Liu, Z., Lobo, S. M., Ahmed, M., Hines-Peralta, A. U., Lenkinski, R. E., & Goldberg, S. N. (2005). Radiofrequency Ablation: Importance of Background Tissue Electrical Conductivity—An Agar Phantom and Computer Modeling Study. Radiology, 236(2), 495-502. doi:10.1148/radiol.2362040965 | es_ES |
dc.description.references | Gabriel, C., Gabriel, S., & Corthout, E. (1996). The dielectric properties of biological tissues: I. Literature survey. Physics in Medicine and Biology, 41(11), 2231-2249. doi:10.1088/0031-9155/41/11/001 | es_ES |
dc.description.references | Jo, B., & Aksan, A. (2010). Prediction of the extent of thermal damage in the cornea during conductive keratoplasty. Journal of Thermal Biology, 35(4), 167-174. doi:10.1016/j.jtherbio.2010.02.004 | es_ES |
dc.description.references | Haemmerich, D., Chachati, L., Wright, A. S., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 50(4), 493-500. doi:10.1109/tbme.2003.809488 | es_ES |
dc.description.references | Jarrard, J., Wizeman, B., Brown, R. H., & Mitzner, W. (2010). A theoretical model of the application of RF energy to the airway wall and its experimental validation. BioMedical Engineering OnLine, 9(1), 81. doi:10.1186/1475-925x-9-81 | es_ES |
dc.description.references | Dodde, R. E., Miller, S. F., Geiger, J. D., & Shih, A. J. (2008). Thermal-Electric Finite Element Analysis and Experimental Validation of Bipolar Electrosurgical Cautery. Journal of Manufacturing Science and Engineering, 130(2). doi:10.1115/1.2902858 | es_ES |
dc.description.references | LAU, M., HU, B., WERNETH, R., SHERMAN, M., ORAL, H., MORADY, F., & KRYSL, P. (2010). A Theoretical and Experimental Analysis of Radiofrequency Ablation with a Multielectrode, Phased, Duty-Cycled System. Pacing and Clinical Electrophysiology, 33(9), 1089-1100. doi:10.1111/j.1540-8159.2010.02801.x | es_ES |
dc.description.references | Berjano, E. J., Alió, J. L., & Saiz, J. (2005). Modeling for radio-frequency conductive keratoplasty: implications for the maximum temperature reached in the cornea. Physiological Measurement, 26(3), 157-172. doi:10.1088/0967-3334/26/3/002 | es_ES |
dc.description.references | Pätz, T., Kröger, T., & Preusser, T. (2009). Simulation of Radiofrequency Ablation Including Water Evaporation. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, 1287-1290. doi:10.1007/978-3-642-03882-2_341 | es_ES |
dc.description.references | Jain, M. K., & Wolf, P. D. (2000). A Three-Dimensional Finite Element Model of Radiofrequency Ablation with Blood Flow and its Experimental Validation. Annals of Biomedical Engineering, 28(9), 1075-1084. doi:10.1114/1.1310219 | es_ES |
dc.description.references | Chang, I. A., & Nguyen, U. D. (2004). BioMedical Engineering OnLine, 3(1), 27. doi:10.1186/1475-925x-3-27 | es_ES |
dc.description.references | Yang, D., Converse, M. C., Mahvi, D. M., & Webster, J. G. (2007). Expanding the Bioheat Equation to Include Tissue Internal Water Evaporation During Heating. IEEE Transactions on Biomedical Engineering, 54(8), 1382-1388. doi:10.1109/tbme.2007.890740 | es_ES |
dc.description.references | Bhavaraju, N. C., & Valvano, J. W. (1999). International Journal of Thermophysics, 20(2), 665-676. doi:10.1023/a:1022673524963 | es_ES |
dc.description.references | Baldwin, S. A., Pelman, A., & Bert, J. L. (2001). A Heat Transfer Model of Thermal Balloon Endometrial Ablation. Annals of Biomedical Engineering, 29(11), 1009-1018. doi:10.1114/1.1415521 | es_ES |
dc.description.references | Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045 | es_ES |
dc.description.references | Pennes, H. H. (1998). Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. Journal of Applied Physiology, 85(1), 5-34. doi:10.1152/jappl.1998.85.1.5 | es_ES |
dc.description.references | Pearce, J., Panescu, D., & Thomsen, S. (2005). Simulation of diopter changes in radio frequency conductive keratoplasty in the cornea. Modelling in Medicine and Biology VI. doi:10.2495/bio050451 | es_ES |
dc.description.references | Zhao, G., Zhang, H.-F., Guo, X.-J., Luo, D.-W., & Gao, D.-Y. (2007). Effect of blood flow and metabolism on multidimensional heat transfer during cryosurgery. Medical Engineering & Physics, 29(2), 205-215. doi:10.1016/j.medengphy.2006.03.005 | es_ES |
dc.description.references | Berjano, E. J., Burdío, F., Navarro, A. C., Burdío, J. M., Güemes, A., Aldana, O., … Gregorio, M. A. de. (2006). Improved perfusion system for bipolar radiofrequency ablation of liver: preliminary findings from a computer modeling study. Physiological Measurement, 27(10), N55-N66. doi:10.1088/0967-3334/27/10/n03 | es_ES |
dc.description.references | Trujillo, M., Alba, J., & Berjano, E. (2012). Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes. International Journal of Hyperthermia, 28(1), 62-68. doi:10.3109/02656736.2011.631076 | es_ES |
dc.description.references | Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107 | es_ES |
dc.description.references | Chang, S.-J., Yu, W.-J., Chang, C.-C., & Chen, Y.-H. (2010). 7 PROTEOMICS ANALYSIS OF MALE REPRODUCTIVE PHYSIOLOGY BY TOONA SINENSIS ROEM. Reproductive BioMedicine Online, 20, S3-S4. doi:10.1016/s1472-6483(10)62425-x | es_ES |
dc.description.references | Beop-Min Kim, Jacques, S. L., Rastegar, S., Thomsen, S., & Motamedi, M. (1996). Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue. IEEE Journal of Selected Topics in Quantum Electronics, 2(4), 922-933. doi:10.1109/2944.577317 | es_ES |
dc.description.references | Berjano, E. J., Saiz, J., & Ferrero, J. M. (2002). Radio-frequency heating of the cornea: theoretical model and in vitro experiments. IEEE Transactions on Biomedical Engineering, 49(3), 196-205. doi:10.1109/10.983453 | es_ES |
dc.description.references | Barauskas, R., Gulbinas, A., & Barauskas, G. (2007). Investigation of radiofrequency ablation process in liver tissue by finite element modeling and experiment. Medicina, 43(4), 310. doi:10.3390/medicina43040039 | es_ES |
dc.description.references | Ji, Z., & Brace, C. L. (2011). Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation. Physics in Medicine and Biology, 56(16), 5249-5264. doi:10.1088/0031-9155/56/16/011 | es_ES |
dc.description.references | Labonte, S. (1994). Numerical model for radio-frequency ablation of the endocardium and its experimental validation. IEEE Transactions on Biomedical Engineering, 41(2), 108-115. doi:10.1109/10.284921 | es_ES |