- -

Dynamic Bayesian Networks as a Decision Support Tool for assessing Climate Change impacts on highly stressed groundwater systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamic Bayesian Networks as a Decision Support Tool for assessing Climate Change impacts on highly stressed groundwater systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Molina, José Luis es_ES
dc.contributor.author Pulido Velázquez, David es_ES
dc.contributor.author García-Arostegui, J.L. es_ES
dc.contributor.author Pulido-Velazquez, M. es_ES
dc.date.accessioned 2014-10-15T07:05:30Z
dc.date.available 2014-10-15T07:05:30Z
dc.date.issued 2013-02-04
dc.identifier.issn 0022-1694
dc.identifier.uri http://hdl.handle.net/10251/43270
dc.description.abstract Bayesian Networks (BNs) are powerful tools for assessing and predicting consequences of water management scenarios and uncertain drivers like climate change, integrating available scientific knowledge with the interests of the multiple stakeholders. However, among their major limitations, the non-transient treatment of the cause-effect relationship stands out. A Decision Support System (DSS) based on Dynamic Bayesian Networks (DBNs) is proposed here aimed to palliate that limitation through time slicing technique. The DSS comprises several classes (Object-Oriented BN networks), especially designed for future 5 years length time steps (time slices), covering a total control period of 30 years (2070-2100). The DSS has been developed for assessing impacts generated by different Climate Change (CC) scenarios (generated from several Regional Climatic Models (RCMs) under two emission scenarios, A1B and A2) in an aquifer system (Serral-Salinas) affected by intensive groundwater use over the last 30 years. A calibrated continuous water balance model was used to generate hydrological CC scenarios, and then a groundwater flow model (MODFLOW) was employed in order to analyze the aquifer behavior under CC conditions. Results obtained from both models were used as input for the DSS, considering rainfall, aquifer recharge, variation of piezometric levels and temporal evolution of aquifer storage as the main hydrological components of the aquifer system. Results show the evolution of the aquifer storage for each future time step under different climate change conditions and under controlled water management interventions. This type of applications would allow establishing potential adaptation strategies for aquifer systems as the CC comes into effect es_ES
dc.description.sponsorship This study has been partially supported by the European Community 7th Framework Project GENESIS (226536) on groundwater systems and from the subprogram Juan de la Cierva (2010) of the Spanish Ministry of Science and Innovation as well as from the Plan Nacional I+D+i 2008-2011 of the Spanish Ministry of Science and Innovation (Subprojects CGL2009-13238-C02-01 and CGL2009-13238-C02-02). T. Finally, the authors want to thank the Segura River Basin Agency (Confederacion Hidrografica del Segura) for the data and information facilitated, and to all the stakeholders who have collaborated in this research. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Hydrology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dynamic Bayesian Networks es_ES
dc.subject Climate Change es_ES
dc.subject Decision Support Systems es_ES
dc.subject Aquifers management es_ES
dc.subject Impacts es_ES
dc.subject Groundwater intensive use es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Dynamic Bayesian Networks as a Decision Support Tool for assessing Climate Change impacts on highly stressed groundwater systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jhydrol.2012.11.038
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/226536/EU/Groundwater and dependent Ecosystems: NEw Scientific basIS on climate change and land-use impacts for the update of the EU Groundwater Directive/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2009-13238-C02-01/ES/Generación y simulación de escenarios futuros de hidrología superficial y subterránea (GESHYDRO)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2009-13238-C02-02/ES/Modelos hidroeconómicos para adaptar la gestión de sistemas de recursos hídricos al cambio climático (HYDROECOCLIMATE)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Molina, JL.; Pulido Velázquez, D.; García-Arostegui, J.; Pulido-Velazquez, M. (2013). Dynamic Bayesian Networks as a Decision Support Tool for assessing Climate Change impacts on highly stressed groundwater systems. Journal of Hydrology. 479:113-129. https://doi.org/10.1016/j.jhydrol.2012.11.038 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.jhydrol.2012.11.038 es_ES
dc.description.upvformatpinicio 113 es_ES
dc.description.upvformatpfin 129 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 479 es_ES
dc.relation.senia 252543
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem