- -

New concept for a regenerative and resorbable prosthesis for tendon and ligament. Physicochemical and biological characterization of PLA-braided biomaterial

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New concept for a regenerative and resorbable prosthesis for tendon and ligament. Physicochemical and biological characterization of PLA-braided biomaterial

Mostrar el registro completo del ítem

Araque Monrós, MC.; Gamboa Martinez, TC.; Gil Santos, L.; Gironés Bernabé, S.; Monleón Pradas, M.; Más Estellés, J. (2013). New concept for a regenerative and resorbable prosthesis for tendon and ligament. Physicochemical and biological characterization of PLA-braided biomaterial. Journal of Biomedical Materials Research Part A. 101A(11):3228-3237. doi:10.1002/jbm.a.34633

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43271

Ficheros en el ítem

Metadatos del ítem

Título: New concept for a regenerative and resorbable prosthesis for tendon and ligament. Physicochemical and biological characterization of PLA-braided biomaterial
Autor: Araque Monrós, María Carmen Gamboa Martínez, Tatiana Carolina Gil Santos, Luis Gironés Bernabé, Sagrario Monleón Pradas, Manuel Más Estellés, Jorge
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Fecha difusión:
Resumen:
We present a concept for a new regenerative and resorbable prosthesis for tendon and ligament and characterize the physicomechanical and biological behavior of one of its components, a hollow braid made of poly-lactide ...[+]
Palabras clave: Prosthesis , Tendon , Ligament , Resorbable , Regenerative
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Biomedical Materials Research Part A. (issn: 1549-3296 )
DOI: 10.1002/jbm.a.34633
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/jbm.a.34633
Agradecimientos:
This work has been developed thanks to the financial support of AITEX (Valencia, Spain). JME thanks Drs. Isabel Pascual, Andres Pena, and their team from Hospital Clinico of Valencia for their fine work.
Tipo: Artículo

References

Vieira, A. C., Guedes, R. M., & Marques, A. T. (2009). Development of ligament tissue biodegradable devices: A review. Journal of Biomechanics, 42(15), 2421-2430. doi:10.1016/j.jbiomech.2009.07.019

Kuo, C. K., Marturano, J. E., & Tuan, R. S. (2010). Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs. BMC Sports Science, Medicine and Rehabilitation, 2(1). doi:10.1186/1758-2555-2-20

Butler, D. L., Juncosa-Melvin, N., Boivin, G. P., Galloway, M. T., Shearn, J. T., Gooch, C., & Awad, H. (2008). Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. Journal of Orthopaedic Research, 26(1), 1-9. doi:10.1002/jor.20456 [+]
Vieira, A. C., Guedes, R. M., & Marques, A. T. (2009). Development of ligament tissue biodegradable devices: A review. Journal of Biomechanics, 42(15), 2421-2430. doi:10.1016/j.jbiomech.2009.07.019

Kuo, C. K., Marturano, J. E., & Tuan, R. S. (2010). Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs. BMC Sports Science, Medicine and Rehabilitation, 2(1). doi:10.1186/1758-2555-2-20

Butler, D. L., Juncosa-Melvin, N., Boivin, G. P., Galloway, M. T., Shearn, J. T., Gooch, C., & Awad, H. (2008). Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. Journal of Orthopaedic Research, 26(1), 1-9. doi:10.1002/jor.20456

Lubeck, D. (2003). The costs of musculoskeletal disease: health needs assessment and health economics. Best Practice & Research Clinical Rheumatology, 17(3), 529-539. doi:10.1016/s1521-6942(03)00023-8

COOPERJR, J., BAILEY, L., CARTER, J., CASTIGLIONI, C., KOFRON, M., KO, F., & LAURENCIN, C. (2006). Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials, 27(13), 2747-2754. doi:10.1016/j.biomaterials.2005.12.013

Zheng, M. H., Chen, J., Kirilak, Y., Willers, C., Xu, J., & Wood, D. (2005). Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: Possible implications in human implantation. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 73B(1), 61-67. doi:10.1002/jbm.b.30170

Lee, D. K. (2007). Achilles Tendon Repair with Acellular Tissue Graft Augmentation in Neglected Ruptures. The Journal of Foot and Ankle Surgery, 46(6), 451-455. doi:10.1053/j.jfas.2007.05.007

Seldes, R. M., & Abramchayev, I. (2006). Arthroscopic Insertion of a Biologic Rotator Cuff Tissue Augmentation After Rotator Cuff Repair. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 22(1), 113-116. doi:10.1016/j.arthro.2005.10.005

Miller, M. D., Peters, C. L., & Allen, B. (2006). Early Aseptic Loosening of a Total Knee Arthroplasty Due to Gore-Tex Particle–Induced Osteolysis. The Journal of Arthroplasty, 21(5), 765-770. doi:10.1016/j.arth.2005.07.021

Dominkus, M., Sabeti, M., Toma, C., Abdolvahab, F., Trieb, K., & Kotz, R. I. (2006). Reconstructing the Extensor Apparatus with a New Polyester Ligament. Clinical Orthopaedics and Related Research, 453, 328-334. doi:10.1097/01.blo.0000229368.42738.b6

Murray, A. W., & Macnicol, M. F. (2004). 10–16 year results of Leeds-Keio anterior cruciate ligament reconstruction. The Knee, 11(1), 9-14. doi:10.1016/s0968-0160(03)00076-0

Krampera, M., Pizzolo, G., Aprili, G., & Franchini, M. (2006). Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone, 39(4), 678-683. doi:10.1016/j.bone.2006.04.020

Caplan, A. I. (2005). Review: Mesenchymal Stem Cells: Cell–Based Reconstructive Therapy in Orthopedics. Tissue Engineering, 11(7-8), 1198-1211. doi:10.1089/ten.2005.11.1198

Kimura, Y., Hokugo, A., Takamoto, T., Tabata, Y., & Kurosawa, H. (2008). Regeneration of Anterior Cruciate Ligament by Biodegradable Scaffold Combined with Local Controlled Release of Basic Fibroblast Growth Factor and Collagen Wrapping. Tissue Engineering Part C: Methods, 14(1), 47-57. doi:10.1089/tec.2007.0286

WEI, X., LIN, L., HOU, Y., FU, X., ZHANG, J., MAO, Z., & YU, C. (2008). Construction of recombinant adenovirus co-expression vector carrying the human transforming growth factor-β1 and vascular endothelial growth factor genes and its effect on anterior cruciate ligament fibroblasts. Chinese Medical Journal, 121(15), 1426-1432. doi:10.1097/00029330-200808010-00017

Spindler, K. P., Murray, M. M., Detwiler, K. B., Tarter, J. T., Dawson, J. M., Nanney, L. B., & Davidson, J. M. (2003). The biomechanical response to doses of TGF-β2 in the healing rabbit medial collateral ligament. Journal of Orthopaedic Research, 21(2), 245-249. doi:10.1016/s0736-0266(02)00145-6

Kurtz, C. A., Loebig, T. G., Anderson, D. D., DeMeo, P. J., & Campbell, P. G. (1999). Insulin-Like Growth Factor I Accelerates Functional Recovery from Achilles Tendon Injury in a Rat Model. The American Journal of Sports Medicine, 27(3), 363-369. doi:10.1177/03635465990270031701

Dahlgren, L. A., van der Meulen, M. C. H., Bertram, J. E. A., Starrak, G. S., & Nixon, A. J. (2002). Insulin-like growth factor-I improves cellular and molecular aspects of healing in a collagenase-induced model of flexor tendinitis. Journal of Orthopaedic Research, 20(5), 910-919. doi:10.1016/s0736-0266(02)00009-8

Molloy, T., Wang, Y., & Murrell, G. A. C. (2003). The Roles of Growth Factors in Tendon and Ligament Healing. Sports Medicine, 33(5), 381-394. doi:10.2165/00007256-200333050-00004

Costa, M. A., Wu, C., Pham, B. V., Chong, A. K. S., Pham, H. M., & Chang, J. (2006). Tissue Engineering of Flexor Tendons: Optimization of Tenocyte Proliferation Using Growth Factor Supplementation. Tissue Engineering, 12(7), 1937-1943. doi:10.1089/ten.2006.12.1937

Jayankura, M., Boggione, C., Frisén, C., Boyer, O., Fouret, P., Saillant, G., & Klatzmann, D. (2003). In situgene transfer into animal tendons by injection of naked DNA and electrotransfer. The Journal of Gene Medicine, 5(7), 618-624. doi:10.1002/jgm.389

Huang, D., Balian, G., & Chhabra, A. B. (2006). Tendon Tissue Engineering and Gene Transfer: The Future of Surgical Treatment. The Journal of Hand Surgery, 31(5), 693-704. doi:10.1016/j.jhsa.2005.10.022

Lu, H. H., Cooper, J. A., Manuel, S., Freeman, J. W., Attawia, M. A., Ko, F. K., & Laurencin, C. T. (2005). Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials, 26(23), 4805-4816. doi:10.1016/j.biomaterials.2004.11.050

Laurencin, C. T., & Freeman, J. W. (2005). Ligament tissue engineering: An evolutionary materials science approach. Biomaterials, 26(36), 7530-7536. doi:10.1016/j.biomaterials.2005.05.073

Deng, D., Liu, W., Xu, F., Yang, Y., Zhou, G., Zhang, W. J., … Cao, Y. (2009). Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain. Biomaterials, 30(35), 6724-6730. doi:10.1016/j.biomaterials.2009.08.054

Freeman, J. W., Woods, M. D., & Laurencin, C. T. (2007). Tissue engineering of the anterior cruciate ligament using a braid–twist scaffold design. Journal of Biomechanics, 40(9), 2029-2036. doi:10.1016/j.jbiomech.2006.09.025

LOO, S., TAN, H., OOI, C., & BOEY, Y. (2006). Hydrolytic degradation of electron beam irradiated high molecular weight and non-irradiated moderate molecular weight PLLA. Acta Biomaterialia, 2(3), 287-296. doi:10.1016/j.actbio.2005.10.003

Saha, S. K., & Tsuji, H. (2006). Effects of molecular weight and small amounts of d-lactide units on hydrolytic degradation of poly(l-lactic acid)s. Polymer Degradation and Stability, 91(8), 1665-1673. doi:10.1016/j.polymdegradstab.2005.12.009

Iannace, S., Maffezzoli, A., Leo, G., & Nicolais, L. (2001). Influence of crystal and amorphous phase morphology on hydrolytic degradation of PLLA subjected to different processing conditions. Polymer, 42(8), 3799-3807. doi:10.1016/s0032-3861(00)00744-8

Tsuji, H., Ikarashi, K., & Fukuda, N. (2004). Poly(l-lactide): XII. Formation, growth, and morphology of crystalline residues as extended-chain crystallites through hydrolysis of poly(l-lactide) films in phosphate-buffered solution. Polymer Degradation and Stability, 84(3), 515-523. doi:10.1016/j.polymdegradstab.2004.01.010

Araque Monrós MC Más Estellés J Monleón Pradas M Gil Santos L Gironés Bernabé S

Garlotta, D. (2001). Journal of Polymers and the Environment, 9(2), 63-84. doi:10.1023/a:1020200822435

Wren, T. A. ., Yerby, S. A., Beaupré, G. S., & Carter, D. R. (2001). Mechanical properties of the human achilles tendon. Clinical Biomechanics, 16(3), 245-251. doi:10.1016/s0268-0033(00)00089-9

Tsuji, H. (1995). Properties and morphologies of poly(?-lactide): 1. Annealing condition effects on properties and morphologies of poly(?-lactide). Polymer, 36(14), 2709-2716. doi:10.1016/0032-3861(95)93647-5

Hooley, C. J., McCrum, N. G., & Cohen, R. E. (1980). The viscoelastic deformation of tendon. Journal of Biomechanics, 13(6), 521-528. doi:10.1016/0021-9290(80)90345-0

Quynh, T. M., Mitomo, H., Nagasawa, N., Wada, Y., Yoshii, F., & Tamada, M. (2007). Properties of crosslinked polylactides (PLLA & PDLA) by radiation and its biodegradability. European Polymer Journal, 43(5), 1779-1785. doi:10.1016/j.eurpolymj.2007.03.007

Chen, J., Xu, J., Wang, A., & Zheng, M. (2009). Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expert Review of Medical Devices, 6(1), 61-73. doi:10.1586/17434440.6.1.61

Johnson, G. A., Tramaglini, D. M., Levine, R. E., Ohno, K., Choi, N.-Y., & L-Y. Woo, S. (1994). Tensile and viscoelastic properties of human patellar tendon. Journal of Orthopaedic Research, 12(6), 796-803. doi:10.1002/jor.1100120607

Rees, J. S., & Jacobsen, P. H. (1997). Elastic modulus of the periodontal ligament. Biomaterials, 18(14), 995-999. doi:10.1016/s0142-9612(97)00021-5

Magnusson, S. P., Aagaard, P., Rosager, S., Dyhre-Poulsen, P., & Kjaer, M. (2001). Load-displacement properties of the human triceps surae aponeurosisin vivo. The Journal of Physiology, 531(1), 277-288. doi:10.1111/j.1469-7793.2001.0277j.x

Maganaris, C. N., & Paul, J. P. (2002). Tensile properties of the in vivo human gastrocnemius tendon. Journal of Biomechanics, 35(12), 1639-1646. doi:10.1016/s0021-9290(02)00240-3

Maganaris, C. N., & Paul, J. P. (2000). Hysteresis measurements in intact human tendon. Journal of Biomechanics, 33(12), 1723-1727. doi:10.1016/s0021-9290(00)00130-5

Chu, C. C. (1981). Hydrolytic degradation of polyglycolic acid: Tensile strength and crystallinity study. Journal of Applied Polymer Science, 26(5), 1727-1734. doi:10.1002/app.1981.070260527

Yuan, X., Mak, A. F. ., & Yao, K. (2002). Comparative observation of accelerated degradation of poly(l-lactic acid) fibres in phosphate buffered saline and a dilute alkaline solution. Polymer Degradation and Stability, 75(1), 45-53. doi:10.1016/s0141-3910(01)00203-8

Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32(8-9), 762-798. doi:10.1016/j.progpolymsci.2007.05.017

Shearer, H., Ellis, M. J., Perera, S. P., & Chaudhuri, J. B. (2006). Effects of Common Sterilization Methods on the Structure and Properties of Poly(D,L Lactic-Co-Glycolic Acid) Scaffolds. Tissue Engineering, 12(10), 2717-2727. doi:10.1089/ten.2006.12.2717

Juncosa-Melvin, N., Boivin, G. P., Galloway, M. T., Gooch, C., West, J. R., & Butler, D. L. (2006). Effects of Cell-to-Collagen Ratio in Stem Cell-Seeded Constructs for Achilles Tendon Repair. Tissue Engineering, 12(4), 681-689. doi:10.1089/ten.2006.12.681

Hoffmann, A. (2006). Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. Journal of Clinical Investigation, 116(4), 940-952. doi:10.1172/jci22689

ALTMAN, G., HORAN, R., MARTIN, I., FARHADI, J., STARK, P., VOLLOCH, V., … KAPLAN, D. L. (2002). Cell differentiation by mechanical stress. The FASEB Journal, 16(2), 270-272. doi:10.1096/fj.01-0656fje

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem