- -

Nernst-Planck model of photo-triggered, pH-tunable ionic transport through nanopores functionalized with "caged" lysine chains

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nernst-Planck model of photo-triggered, pH-tunable ionic transport through nanopores functionalized with "caged" lysine chains

Mostrar el registro completo del ítem

Nasir, S.; Ramirez Hoyos, P.; Ali, M.; Ahmed, I.; Fruk, L.; Mafé, S.; Ensinger, W. (2013). Nernst-Planck model of photo-triggered, pH-tunable ionic transport through nanopores functionalized with "caged" lysine chains. Journal of Chemical Physics. 138(3):034709-1-034709-11. https://doi.org/10.1063/1.4775811

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43473

Ficheros en el ítem

Metadatos del ítem

Título: Nernst-Planck model of photo-triggered, pH-tunable ionic transport through nanopores functionalized with "caged" lysine chains
Autor: Nasir, Saima Ramirez Hoyos, Patricio Ali, Mubarak Ahmed, Ishtiaq Fruk, Ljiliana Mafé, Salvador Ensinger, Wolfgang
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
We describe the fabrication of asymmetric nanopores sensitive to ultraviolet (UV) light, and give a detailed account of the divalent ionic transport through these pores using a theoretical model based on the Nernst-Planck ...[+]
Palabras clave: Channels , Transistors , Selectivity , Field , Membranes , Dna analysis , Single nanochannel , Solid-state nanopores , Nanofluidic diode , Synthetic conical nanopores
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Chemical Physics. (issn: 0021-9606 )
DOI: 10.1063/1.4775811
Editorial:
American Institute of Physics (AIP)
Versión del editor: http://dx.doi.org/10.1063/1.4775811
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2009-07747/ES/Fenomenos De Transporte En Nanoporos Sinteticos Con Nuevas Propiedades Funcionales: Diseño De Nuevos Procesos/
info:eu-repo/grantAgreement/GVA//PROMETEO%2FGV%2F0069
info:eu-repo/grantAgreement/MINECO//MAT2012-32084/ES/FUNDAMENTOS DE LA TECNOLOGIA DE NANOPOROS FUNCIONALIZADOS/
Agradecimientos:
The authors would like to thank Miguel Ferrandez and Juan Pablo Arranz for assistance in the preparation of the artwork. P. R. and S. M. acknowledge financial support from the Ministerio de Economia y Competitividad (Projects ...[+]
Tipo: Artículo

References

Healy, K. (2007). Nanopore-based single-molecule DNA analysis. Nanomedicine, 2(4), 459-481. doi:10.2217/17435889.2.4.459

Griffiths, J. (2008). The Realm of the Nanopore. Analytical Chemistry, 80(1), 23-27. doi:10.1021/ac085995z

Jovanovic-Talisman, T., Tetenbaum-Novatt, J., McKenney, A. S., Zilman, A., Peters, R., Rout, M. P., & Chait, B. T. (2008). Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature, 457(7232), 1023-1027. doi:10.1038/nature07600 [+]
Healy, K. (2007). Nanopore-based single-molecule DNA analysis. Nanomedicine, 2(4), 459-481. doi:10.2217/17435889.2.4.459

Griffiths, J. (2008). The Realm of the Nanopore. Analytical Chemistry, 80(1), 23-27. doi:10.1021/ac085995z

Jovanovic-Talisman, T., Tetenbaum-Novatt, J., McKenney, A. S., Zilman, A., Peters, R., Rout, M. P., & Chait, B. T. (2008). Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature, 457(7232), 1023-1027. doi:10.1038/nature07600

Schoch, R. B., Han, J., & Renaud, P. (2008). Transport phenomena in nanofluidics. Reviews of Modern Physics, 80(3), 839-883. doi:10.1103/revmodphys.80.839

Nam, S.-W., Rooks, M. J., Kim, K.-B., & Rossnagel, S. M. (2009). Ionic Field Effect Transistors with Sub-10 nm Multiple Nanopores. Nano Letters, 9(5), 2044-2048. doi:10.1021/nl900309s

Perry, J. M., Zhou, K., Harms, Z. D., & Jacobson, S. C. (2010). Ion Transport in Nanofluidic Funnels. ACS Nano, 4(7), 3897-3902. doi:10.1021/nn100692z

Guan, W., Fan, R., & Reed, M. A. (2011). Field-effect reconfigurable nanofluidic ionic diodes. Nature Communications, 2(1). doi:10.1038/ncomms1514

Striemer, C. C., Gaborski, T. R., McGrath, J. L., & Fauchet, P. M. (2007). Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature, 445(7129), 749-753. doi:10.1038/nature05532

Van den Berg, A., & Wessling, M. (2007). Silicon for the perfect membrane. Nature, 445(7129), 726-726. doi:10.1038/445726a

Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2(4), 209-215. doi:10.1038/nnano.2007.27

Mager, M. D., & Melosh, N. A. (2008). Nanopore-Spanning Lipid Bilayers for Controlled Chemical Release. Advanced Materials, 20(23), 4423-4427. doi:10.1002/adma.200800969

Apel, P. Y., Korchev, Y. ., Siwy, Z., Spohr, R., & Yoshida, M. (2001). Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(3), 337-346. doi:10.1016/s0168-583x(01)00722-4

Siwy, Z., & Fuliński, A. (2002). Fabrication of a Synthetic Nanopore Ion Pump. Physical Review Letters, 89(19). doi:10.1103/physrevlett.89.198103

Ramírez, P., Mafé, S., Aguilella, V. M., & Alcaraz, A. (2003). Synthetic nanopores with fixed charges: An electrodiffusion model for ionic transport. Physical Review E, 68(1). doi:10.1103/physreve.68.011910

Siwy, Z., & Fuliński, A. (2004). A nanodevice for rectification and pumping ions. American Journal of Physics, 72(5), 567-574. doi:10.1119/1.1648328

Siwy, Z., Kosińska, I. D., Fuliński, A., & Martin, C. R. (2005). Asymmetric Diffusion through Synthetic Nanopores. Physical Review Letters, 94(4). doi:10.1103/physrevlett.94.048102

Powell, M. R., Sullivan, M., Vlassiouk, I., Constantin, D., Sudre, O., Martens, C. C., … Siwy, Z. S. (2007). Nanoprecipitation-assisted ion current oscillations. Nature Nanotechnology, 3(1), 51-57. doi:10.1038/nnano.2007.420

García-Giménez, E., Alcaraz, A., Aguilella, V. M., & Ramírez, P. (2009). Directional ion selectivity in a biological nanopore with bipolar structure. Journal of Membrane Science, 331(1-2), 137-142. doi:10.1016/j.memsci.2009.01.026

Hou, X., Zhang, H., & Jiang, L. (2012). Building Bio-Inspired Artificial Functional Nanochannels: From Symmetric to Asymmetric Modification. Angewandte Chemie International Edition, 51(22), 5296-5307. doi:10.1002/anie.201104904

Harrell, C. C., Siwy, Z. S., & Martin, C. R. (2006). Conical Nanopore Membranes: Controlling the Nanopore Shape. Small, 2(2), 194-198. doi:10.1002/smll.200500196

Apel, P. Y., Blonskaya, I. V., Dmitriev, S. N., Orelovitch, O. L., Presz, A., & Sartowska, B. A. (2007). Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles. Nanotechnology, 18(30), 305302. doi:10.1088/0957-4484/18/30/305302

Apel, P. Y., Blonskaya, I. V., Orelovitch, O. L., Ramirez, P., & Sartowska, B. A. (2011). Effect of nanopore geometry on ion current rectification. Nanotechnology, 22(17), 175302. doi:10.1088/0957-4484/22/17/175302

Ali, M., Ramirez, P., Nguyen, H. Q., Nasir, S., Cervera, J., Mafe, S., & Ensinger, W. (2012). Single Cigar-Shaped Nanopores Functionalized with Amphoteric Amino Acid Chains: Experimental and Theoretical Characterization. ACS Nano, 6(4), 3631-3640. doi:10.1021/nn3010119

Kalman, E. B., Sudre, O., Vlassiouk, I., & Siwy, Z. S. (2008). Control of ionic transport through gated single conical nanopores. Analytical and Bioanalytical Chemistry, 394(2), 413-419. doi:10.1007/s00216-008-2545-3

Mafe, S., Manzanares, J. A., & Ramirez, P. (2010). Gating of Nanopores: Modeling and Implementation of Logic Gates. The Journal of Physical Chemistry C, 114(49), 21287-21290. doi:10.1021/jp1087114

Nasir, S., Ali, M., & Ensinger, W. (2012). Thermally controlled permeation of ionic molecules through synthetic nanopores functionalized with amine-terminated polymer brushes. Nanotechnology, 23(22), 225502. doi:10.1088/0957-4484/23/22/225502

Guo, W., Xia, H., Cao, L., Xia, F., Wang, S., Zhang, G., … Zhu, D. (2010). Integrating Ionic Gate and Rectifier Within One Solid-State Nanopore via Modification with Dual-Responsive Copolymer Brushes. Advanced Functional Materials, 20(20), 3561-3567. doi:10.1002/adfm.201000989

Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f

Ali, M., Mafe, S., Ramirez, P., Neumann, R., & Ensinger, W. (2009). Logic Gates Using Nanofluidic Diodes Based on Conical Nanopores Functionalized with Polyprotic Acid Chains. Langmuir, 25(20), 11993-11997. doi:10.1021/la902792f

Hou, X., Liu, Y., Dong, H., Yang, F., Li, L., & Jiang, L. (2010). A pH-Gating Ionic Transport Nanodevice: Asymmetric Chemical Modification of Single Nanochannels. Advanced Materials, 22(22), 2440-2443. doi:10.1002/adma.200904268

Hou, X., Guo, W., Xia, F., Nie, F.-Q., Dong, H., Tian, Y., … Jiang, L. (2009). A Biomimetic Potassium Responsive Nanochannel: G-Quadruplex DNA Conformational Switching in a Synthetic Nanopore. Journal of the American Chemical Society, 131(22), 7800-7805. doi:10.1021/ja901574c

He, Y., Gillespie, D., Boda, D., Vlassiouk, I., Eisenberg, R. S., & Siwy, Z. S. (2009). Tuning Transport Properties of Nanofluidic Devices with Local Charge Inversion. Journal of the American Chemical Society, 131(14), 5194-5202. doi:10.1021/ja808717u

Ali, M., Neumann, R., & Ensinger, W. (2010). Sequence-Specific Recognition of DNA Oligomer Using Peptide Nucleic Acid (PNA)-Modified Synthetic Ion Channels: PNA/DNA Hybridization in Nanoconfined Environment. ACS Nano, 4(12), 7267-7274. doi:10.1021/nn102119q

Ali, M., Tahir, M. N., Siwy, Z., Neumann, R., Tremel, W., & Ensinger, W. (2011). Hydrogen Peroxide Sensing with Horseradish Peroxidase-Modified Polymer Single Conical Nanochannels. Analytical Chemistry, 83(5), 1673-1680. doi:10.1021/ac102795a

Vlassiouk, I., & Siwy, Z. S. (2007). Nanofluidic Diode. Nano Letters, 7(3), 552-556. doi:10.1021/nl062924b

Kalman, E. B., Vlassiouk, I., & Siwy, Z. S. (2008). Nanofluidic Bipolar Transistors. Advanced Materials, 20(2), 293-297. doi:10.1002/adma.200701867

Ali, M., Ramirez, P., Tahir, M. N., Mafe, S., Siwy, Z., Neumann, R., … Ensinger, W. (2011). Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein–lectin interactions. Nanoscale, 3(4), 1894. doi:10.1039/c1nr00003a

Hou, X., Yang, F., Li, L., Song, Y., Jiang, L., & Zhu, D. (2010). A Biomimetic Asymmetric Responsive Single Nanochannel. Journal of the American Chemical Society, 132(33), 11736-11742. doi:10.1021/ja1045082

Healy, K., Schiedt, B., & Morrison, A. P. (2007). Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2(6), 875-897. doi:10.2217/17435889.2.6.875

Martin, C. R., & Siwy, Z. S. (2007). CHEMISTRY: Learning Nature’s Way: Biosensing with Synthetic Nanopores. Science, 317(5836), 331-332. doi:10.1126/science.1146126

Guo, W., Cao, L., Xia, J., Nie, F.-Q., Ma, W., Xue, J., … Jiang, L. (2010). Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Advanced Functional Materials, 20(8), 1339-1344. doi:10.1002/adfm.200902312

Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056

Ramirez, P., Ali, M., Ensinger, W., & Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters, 101(13), 133108. doi:10.1063/1.4754845

Jiang, Y., Liu, N., Guo, W., Xia, F., & Jiang, L. (2012). Highly-Efficient Gating of Solid-State Nanochannels by DNA Supersandwich Structure Containing ATP Aptamers: A Nanofluidic IMPLICATION Logic Device. Journal of the American Chemical Society, 134(37), 15395-15401. doi:10.1021/ja3053333

Ali, M., Nasir, S., Ramirez, P., Ahmed, I., Nguyen, Q. H., Fruk, L., … Ensinger, W. (2011). Optical Gating of Photosensitive Synthetic Ion Channels. Advanced Functional Materials, 22(2), 390-396. doi:10.1002/adfm.201102146

Zhang, M., Hou, X., Wang, J., Tian, Y., Fan, X., Zhai, J., & Jiang, L. (2012). Light and pH Cooperative Nanofluidic Diode Using a Spiropyran-Functionalized Single Nanochannel. Advanced Materials, 24(18), 2424-2428. doi:10.1002/adma.201104536

Ramírez, P., Apel, P. Y., Cervera, J., & Mafé, S. (2008). Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. Nanotechnology, 19(31), 315707. doi:10.1088/0957-4484/19/31/315707

Ali, M., Yameen, B., Cervera, J., Ramírez, P., Neumann, R., Ensinger, W., … Azzaroni, O. (2010). Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment. Journal of the American Chemical Society, 132(24), 8338-8348. doi:10.1021/ja101014y

Yu Apel, P., Blonskaya, I. V., Orelovitch, O. L., Sartowska, B. A., & Spohr, R. (2012). Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements. Nanotechnology, 23(22), 225503. doi:10.1088/0957-4484/23/22/225503

Li, N., Yu, S., Harrell, C. C., & Martin, C. R. (2004). Conical Nanopore Membranes. Preparation and Transport Properties. Analytical Chemistry, 76(7), 2025-2030. doi:10.1021/ac035402e

Harrell, C. C., Kohli, P., Siwy, Z., & Martin, C. R. (2004). DNA−Nanotube Artificial Ion Channels. Journal of the American Chemical Society, 126(48), 15646-15647. doi:10.1021/ja044948v

Manzanares, J. A., Mafé, S., & Pellicer, J. (1992). Current efficiency enhancement in membranes with macroscopic inhomogeneities in the fixed charge distribution. J. Chem. Soc., Faraday Trans., 88(16), 2355-2364. doi:10.1039/ft9928802355

MacGillivray, A. D. (1968). Nernst‐Planck Equations and the Electroneutrality and Donnan Equilibrium Assumptions. The Journal of Chemical Physics, 48(7), 2903-2907. doi:10.1063/1.1669549

Rubinstein, I. (1990). Electro-Diffusion of Ions. doi:10.1137/1.9781611970814

Kontturi, K., Murtomäki, L., & Manzanares, J. A. (2008). Ionic Transport Processes. doi:10.1093/acprof:oso/9780199533817.001.0001

Burger, M. (2011). Inverse problems in ion channel modelling. Inverse Problems, 27(8), 083001. doi:10.1088/0266-5611/27/8/083001

Burger, M., Eisenberg, R. S., & Engl, H. W. (2007). Inverse Problems Related to Ion Channel Selectivity. SIAM Journal on Applied Mathematics, 67(4), 960-989. doi:10.1137/060664689

Cervera, J., Schiedt, B., & Ramírez, P. (2005). A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores. Europhysics Letters (EPL), 71(1), 35-41. doi:10.1209/epl/i2005-10054-x

Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797

Cervera, J., Alcaraz, A., Schiedt, B., Neumann, R., & Ramírez, P. (2007). Asymmetric Selectivity of Synthetic Conical Nanopores Probed by Reversal Potential Measurements. The Journal of Physical Chemistry C, 111(33), 12265-12273. doi:10.1021/jp071884c

Lee, S. B., & Martin, C. R. (2001). pH-Switchable, Ion-Permselective Gold Nanotubule Membrane Based on Chemisorbed Cysteine. Analytical Chemistry, 73(4), 768-775. doi:10.1021/ac0008901

Pellicer, J., Mafé, S., & Aguilella, V. M. (1986). Ionic Transport Across Porous Charged Membranes and the Goldman Constant Field Assumption. Berichte der Bunsengesellschaft für physikalische Chemie, 90(10), 867-872. doi:10.1002/bbpc.19860901008

LAKSHMINARAYANAIAH, N. (1984). ELECTRICAL POTENTIALS ACROSS MEMBRANES. Equations of Membrane Biophysics, 129-164. doi:10.1016/b978-0-12-434260-6.50007-2

Cervera, J., Ramírez, P., Manzanares, J. A., & Mafé, S. (2009). Incorporating ionic size in the transport equations for charged nanopores. Microfluidics and Nanofluidics, 9(1), 41-53. doi:10.1007/s10404-009-0518-2

Wang, G., Bohaty, A. K., Zharov, I., & White, H. S. (2006). Photon Gated Transport at the Glass Nanopore Electrode. Journal of the American Chemical Society, 128(41), 13553-13558. doi:10.1021/ja064274j

Eisenberg, R. S. (1996). Computing the Field in Proteins and Channels. Journal of Membrane Biology, 150(1), 1-25. doi:10.1007/s002329900026

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem