- -

Nernst-Planck model of photo-triggered, pH-tunable ionic transport through nanopores functionalized with "caged" lysine chains

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nernst-Planck model of photo-triggered, pH-tunable ionic transport through nanopores functionalized with "caged" lysine chains

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nasir, Saima es_ES
dc.contributor.author Ramirez Hoyos, Patricio es_ES
dc.contributor.author Ali, Mubarak es_ES
dc.contributor.author Ahmed, Ishtiaq es_ES
dc.contributor.author Fruk, Ljiliana es_ES
dc.contributor.author Mafé, Salvador es_ES
dc.contributor.author Ensinger, Wolfgang es_ES
dc.date.accessioned 2014-10-22T10:02:41Z
dc.date.available 2014-10-22T10:02:41Z
dc.date.issued 2013-01-21
dc.identifier.issn 0021-9606
dc.identifier.uri http://hdl.handle.net/10251/43473
dc.description.abstract We describe the fabrication of asymmetric nanopores sensitive to ultraviolet (UV) light, and give a detailed account of the divalent ionic transport through these pores using a theoretical model based on the Nernst-Planck equations. The pore surface is decorated with lysine chains having pH-sensitive (amine and carboxylic acid) moieties that are caged with photo-labile 4,5-dimethoxy- 2-nitrobenzyl (NVOC) groups. The uncharged hydrophobic NVOC groups are removed using UV irradiation, leading to the generation of hydrophilic “uncaged” amphoteric groups on the pore surface. We demonstrate experimentally that polymer membranes containing single pore and arrays of asymmetric nanopores can be employed for the pH-controlled transport of ionic and molecular analytes. Comparison between theory and experiment allows for understanding the individual properties of the phototriggered nanopores, and provides also useful clues for the design and fabrication of multipore membranes to be used in practical applications. © 2013 American Institute of Physics. es_ES
dc.description.sponsorship The authors would like to thank Miguel Ferrandez and Juan Pablo Arranz for assistance in the preparation of the artwork. P. R. and S. M. acknowledge financial support from the Ministerio de Economia y Competitividad (Projects Nos. MAT2009-07747 and MAT2012-32084), the Generalitat Valenciana (Project No. PROMETEO/GV/0069), and FEDER. S.N., M. A., and W. E. gratefully acknowledge financial support by the Beilstein-Institut, Frankfurt/Main, Germany, within the research collaboration NanoBiC, and L. F. and I. A. DFG-CFN Excellence Initiative Project A5.7. The authors thank Dr. Christina Trautmann from GSI (Materials research group) for support with the heavy ion irradiation experiments, and Dr. M. N. Tahir (Mainz University) for fruitful discussions and help in performing the UV light irradiation experiments. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Journal of Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Channels es_ES
dc.subject Transistors es_ES
dc.subject Selectivity es_ES
dc.subject Field es_ES
dc.subject Membranes es_ES
dc.subject Dna analysis es_ES
dc.subject Single nanochannel es_ES
dc.subject Solid-state nanopores es_ES
dc.subject Nanofluidic diode es_ES
dc.subject Synthetic conical nanopores es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Nernst-Planck model of photo-triggered, pH-tunable ionic transport through nanopores functionalized with "caged" lysine chains es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4775811
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-07747/ES/Fenomenos De Transporte En Nanoporos Sinteticos Con Nuevas Propiedades Funcionales: Diseño De Nuevos Procesos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2FGV%2F0069 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-32084/ES/FUNDAMENTOS DE LA TECNOLOGIA DE NANOPOROS FUNCIONALIZADOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Nasir, S.; Ramirez Hoyos, P.; Ali, M.; Ahmed, I.; Fruk, L.; Mafé, S.; Ensinger, W. (2013). Nernst-Planck model of photo-triggered, pH-tunable ionic transport through nanopores functionalized with "caged" lysine chains. Journal of Chemical Physics. 138(3):034709-1-034709-11. https://doi.org/10.1063/1.4775811 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4775811 es_ES
dc.description.upvformatpinicio 034709-1 es_ES
dc.description.upvformatpfin 034709-11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 138 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 239302
dc.contributor.funder Beilstein-Institut es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Healy, K. (2007). Nanopore-based single-molecule DNA analysis. Nanomedicine, 2(4), 459-481. doi:10.2217/17435889.2.4.459 es_ES
dc.description.references Griffiths, J. (2008). The Realm of the Nanopore. Analytical Chemistry, 80(1), 23-27. doi:10.1021/ac085995z es_ES
dc.description.references Jovanovic-Talisman, T., Tetenbaum-Novatt, J., McKenney, A. S., Zilman, A., Peters, R., Rout, M. P., & Chait, B. T. (2008). Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature, 457(7232), 1023-1027. doi:10.1038/nature07600 es_ES
dc.description.references Schoch, R. B., Han, J., & Renaud, P. (2008). Transport phenomena in nanofluidics. Reviews of Modern Physics, 80(3), 839-883. doi:10.1103/revmodphys.80.839 es_ES
dc.description.references Nam, S.-W., Rooks, M. J., Kim, K.-B., & Rossnagel, S. M. (2009). Ionic Field Effect Transistors with Sub-10 nm Multiple Nanopores. Nano Letters, 9(5), 2044-2048. doi:10.1021/nl900309s es_ES
dc.description.references Perry, J. M., Zhou, K., Harms, Z. D., & Jacobson, S. C. (2010). Ion Transport in Nanofluidic Funnels. ACS Nano, 4(7), 3897-3902. doi:10.1021/nn100692z es_ES
dc.description.references Guan, W., Fan, R., & Reed, M. A. (2011). Field-effect reconfigurable nanofluidic ionic diodes. Nature Communications, 2(1). doi:10.1038/ncomms1514 es_ES
dc.description.references Striemer, C. C., Gaborski, T. R., McGrath, J. L., & Fauchet, P. M. (2007). Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature, 445(7129), 749-753. doi:10.1038/nature05532 es_ES
dc.description.references Van den Berg, A., & Wessling, M. (2007). Silicon for the perfect membrane. Nature, 445(7129), 726-726. doi:10.1038/445726a es_ES
dc.description.references Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2(4), 209-215. doi:10.1038/nnano.2007.27 es_ES
dc.description.references Mager, M. D., & Melosh, N. A. (2008). Nanopore-Spanning Lipid Bilayers for Controlled Chemical Release. Advanced Materials, 20(23), 4423-4427. doi:10.1002/adma.200800969 es_ES
dc.description.references Apel, P. Y., Korchev, Y. ., Siwy, Z., Spohr, R., & Yoshida, M. (2001). Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(3), 337-346. doi:10.1016/s0168-583x(01)00722-4 es_ES
dc.description.references Siwy, Z., & Fuliński, A. (2002). Fabrication of a Synthetic Nanopore Ion Pump. Physical Review Letters, 89(19). doi:10.1103/physrevlett.89.198103 es_ES
dc.description.references Ramírez, P., Mafé, S., Aguilella, V. M., & Alcaraz, A. (2003). Synthetic nanopores with fixed charges: An electrodiffusion model for ionic transport. Physical Review E, 68(1). doi:10.1103/physreve.68.011910 es_ES
dc.description.references Siwy, Z., & Fuliński, A. (2004). A nanodevice for rectification and pumping ions. American Journal of Physics, 72(5), 567-574. doi:10.1119/1.1648328 es_ES
dc.description.references Siwy, Z., Kosińska, I. D., Fuliński, A., & Martin, C. R. (2005). Asymmetric Diffusion through Synthetic Nanopores. Physical Review Letters, 94(4). doi:10.1103/physrevlett.94.048102 es_ES
dc.description.references Powell, M. R., Sullivan, M., Vlassiouk, I., Constantin, D., Sudre, O., Martens, C. C., … Siwy, Z. S. (2007). Nanoprecipitation-assisted ion current oscillations. Nature Nanotechnology, 3(1), 51-57. doi:10.1038/nnano.2007.420 es_ES
dc.description.references García-Giménez, E., Alcaraz, A., Aguilella, V. M., & Ramírez, P. (2009). Directional ion selectivity in a biological nanopore with bipolar structure. Journal of Membrane Science, 331(1-2), 137-142. doi:10.1016/j.memsci.2009.01.026 es_ES
dc.description.references Hou, X., Zhang, H., & Jiang, L. (2012). Building Bio-Inspired Artificial Functional Nanochannels: From Symmetric to Asymmetric Modification. Angewandte Chemie International Edition, 51(22), 5296-5307. doi:10.1002/anie.201104904 es_ES
dc.description.references Harrell, C. C., Siwy, Z. S., & Martin, C. R. (2006). Conical Nanopore Membranes: Controlling the Nanopore Shape. Small, 2(2), 194-198. doi:10.1002/smll.200500196 es_ES
dc.description.references Apel, P. Y., Blonskaya, I. V., Dmitriev, S. N., Orelovitch, O. L., Presz, A., & Sartowska, B. A. (2007). Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles. Nanotechnology, 18(30), 305302. doi:10.1088/0957-4484/18/30/305302 es_ES
dc.description.references Apel, P. Y., Blonskaya, I. V., Orelovitch, O. L., Ramirez, P., & Sartowska, B. A. (2011). Effect of nanopore geometry on ion current rectification. Nanotechnology, 22(17), 175302. doi:10.1088/0957-4484/22/17/175302 es_ES
dc.description.references Ali, M., Ramirez, P., Nguyen, H. Q., Nasir, S., Cervera, J., Mafe, S., & Ensinger, W. (2012). Single Cigar-Shaped Nanopores Functionalized with Amphoteric Amino Acid Chains: Experimental and Theoretical Characterization. ACS Nano, 6(4), 3631-3640. doi:10.1021/nn3010119 es_ES
dc.description.references Kalman, E. B., Sudre, O., Vlassiouk, I., & Siwy, Z. S. (2008). Control of ionic transport through gated single conical nanopores. Analytical and Bioanalytical Chemistry, 394(2), 413-419. doi:10.1007/s00216-008-2545-3 es_ES
dc.description.references Mafe, S., Manzanares, J. A., & Ramirez, P. (2010). Gating of Nanopores: Modeling and Implementation of Logic Gates. The Journal of Physical Chemistry C, 114(49), 21287-21290. doi:10.1021/jp1087114 es_ES
dc.description.references Nasir, S., Ali, M., & Ensinger, W. (2012). Thermally controlled permeation of ionic molecules through synthetic nanopores functionalized with amine-terminated polymer brushes. Nanotechnology, 23(22), 225502. doi:10.1088/0957-4484/23/22/225502 es_ES
dc.description.references Guo, W., Xia, H., Cao, L., Xia, F., Wang, S., Zhang, G., … Zhu, D. (2010). Integrating Ionic Gate and Rectifier Within One Solid-State Nanopore via Modification with Dual-Responsive Copolymer Brushes. Advanced Functional Materials, 20(20), 3561-3567. doi:10.1002/adfm.201000989 es_ES
dc.description.references Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f es_ES
dc.description.references Ali, M., Mafe, S., Ramirez, P., Neumann, R., & Ensinger, W. (2009). Logic Gates Using Nanofluidic Diodes Based on Conical Nanopores Functionalized with Polyprotic Acid Chains. Langmuir, 25(20), 11993-11997. doi:10.1021/la902792f es_ES
dc.description.references Hou, X., Liu, Y., Dong, H., Yang, F., Li, L., & Jiang, L. (2010). A pH-Gating Ionic Transport Nanodevice: Asymmetric Chemical Modification of Single Nanochannels. Advanced Materials, 22(22), 2440-2443. doi:10.1002/adma.200904268 es_ES
dc.description.references Hou, X., Guo, W., Xia, F., Nie, F.-Q., Dong, H., Tian, Y., … Jiang, L. (2009). A Biomimetic Potassium Responsive Nanochannel: G-Quadruplex DNA Conformational Switching in a Synthetic Nanopore. Journal of the American Chemical Society, 131(22), 7800-7805. doi:10.1021/ja901574c es_ES
dc.description.references He, Y., Gillespie, D., Boda, D., Vlassiouk, I., Eisenberg, R. S., & Siwy, Z. S. (2009). Tuning Transport Properties of Nanofluidic Devices with Local Charge Inversion. Journal of the American Chemical Society, 131(14), 5194-5202. doi:10.1021/ja808717u es_ES
dc.description.references Ali, M., Neumann, R., & Ensinger, W. (2010). Sequence-Specific Recognition of DNA Oligomer Using Peptide Nucleic Acid (PNA)-Modified Synthetic Ion Channels: PNA/DNA Hybridization in Nanoconfined Environment. ACS Nano, 4(12), 7267-7274. doi:10.1021/nn102119q es_ES
dc.description.references Ali, M., Tahir, M. N., Siwy, Z., Neumann, R., Tremel, W., & Ensinger, W. (2011). Hydrogen Peroxide Sensing with Horseradish Peroxidase-Modified Polymer Single Conical Nanochannels. Analytical Chemistry, 83(5), 1673-1680. doi:10.1021/ac102795a es_ES
dc.description.references Vlassiouk, I., & Siwy, Z. S. (2007). Nanofluidic Diode. Nano Letters, 7(3), 552-556. doi:10.1021/nl062924b es_ES
dc.description.references Kalman, E. B., Vlassiouk, I., & Siwy, Z. S. (2008). Nanofluidic Bipolar Transistors. Advanced Materials, 20(2), 293-297. doi:10.1002/adma.200701867 es_ES
dc.description.references Ali, M., Ramirez, P., Tahir, M. N., Mafe, S., Siwy, Z., Neumann, R., … Ensinger, W. (2011). Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein–lectin interactions. Nanoscale, 3(4), 1894. doi:10.1039/c1nr00003a es_ES
dc.description.references Hou, X., Yang, F., Li, L., Song, Y., Jiang, L., & Zhu, D. (2010). A Biomimetic Asymmetric Responsive Single Nanochannel. Journal of the American Chemical Society, 132(33), 11736-11742. doi:10.1021/ja1045082 es_ES
dc.description.references Healy, K., Schiedt, B., & Morrison, A. P. (2007). Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2(6), 875-897. doi:10.2217/17435889.2.6.875 es_ES
dc.description.references Martin, C. R., & Siwy, Z. S. (2007). CHEMISTRY: Learning Nature’s Way: Biosensing with Synthetic Nanopores. Science, 317(5836), 331-332. doi:10.1126/science.1146126 es_ES
dc.description.references Guo, W., Cao, L., Xia, J., Nie, F.-Q., Ma, W., Xue, J., … Jiang, L. (2010). Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Advanced Functional Materials, 20(8), 1339-1344. doi:10.1002/adfm.200902312 es_ES
dc.description.references Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056 es_ES
dc.description.references Ramirez, P., Ali, M., Ensinger, W., & Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters, 101(13), 133108. doi:10.1063/1.4754845 es_ES
dc.description.references Jiang, Y., Liu, N., Guo, W., Xia, F., & Jiang, L. (2012). Highly-Efficient Gating of Solid-State Nanochannels by DNA Supersandwich Structure Containing ATP Aptamers: A Nanofluidic IMPLICATION Logic Device. Journal of the American Chemical Society, 134(37), 15395-15401. doi:10.1021/ja3053333 es_ES
dc.description.references Ali, M., Nasir, S., Ramirez, P., Ahmed, I., Nguyen, Q. H., Fruk, L., … Ensinger, W. (2011). Optical Gating of Photosensitive Synthetic Ion Channels. Advanced Functional Materials, 22(2), 390-396. doi:10.1002/adfm.201102146 es_ES
dc.description.references Zhang, M., Hou, X., Wang, J., Tian, Y., Fan, X., Zhai, J., & Jiang, L. (2012). Light and pH Cooperative Nanofluidic Diode Using a Spiropyran-Functionalized Single Nanochannel. Advanced Materials, 24(18), 2424-2428. doi:10.1002/adma.201104536 es_ES
dc.description.references Ramírez, P., Apel, P. Y., Cervera, J., & Mafé, S. (2008). Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. Nanotechnology, 19(31), 315707. doi:10.1088/0957-4484/19/31/315707 es_ES
dc.description.references Ali, M., Yameen, B., Cervera, J., Ramírez, P., Neumann, R., Ensinger, W., … Azzaroni, O. (2010). Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment. Journal of the American Chemical Society, 132(24), 8338-8348. doi:10.1021/ja101014y es_ES
dc.description.references Yu Apel, P., Blonskaya, I. V., Orelovitch, O. L., Sartowska, B. A., & Spohr, R. (2012). Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements. Nanotechnology, 23(22), 225503. doi:10.1088/0957-4484/23/22/225503 es_ES
dc.description.references Li, N., Yu, S., Harrell, C. C., & Martin, C. R. (2004). Conical Nanopore Membranes. Preparation and Transport Properties. Analytical Chemistry, 76(7), 2025-2030. doi:10.1021/ac035402e es_ES
dc.description.references Harrell, C. C., Kohli, P., Siwy, Z., & Martin, C. R. (2004). DNA−Nanotube Artificial Ion Channels. Journal of the American Chemical Society, 126(48), 15646-15647. doi:10.1021/ja044948v es_ES
dc.description.references Manzanares, J. A., Mafé, S., & Pellicer, J. (1992). Current efficiency enhancement in membranes with macroscopic inhomogeneities in the fixed charge distribution. J. Chem. Soc., Faraday Trans., 88(16), 2355-2364. doi:10.1039/ft9928802355 es_ES
dc.description.references MacGillivray, A. D. (1968). Nernst‐Planck Equations and the Electroneutrality and Donnan Equilibrium Assumptions. The Journal of Chemical Physics, 48(7), 2903-2907. doi:10.1063/1.1669549 es_ES
dc.description.references Rubinstein, I. (1990). Electro-Diffusion of Ions. doi:10.1137/1.9781611970814 es_ES
dc.description.references Kontturi, K., Murtomäki, L., & Manzanares, J. A. (2008). Ionic Transport Processes. doi:10.1093/acprof:oso/9780199533817.001.0001 es_ES
dc.description.references Burger, M. (2011). Inverse problems in ion channel modelling. Inverse Problems, 27(8), 083001. doi:10.1088/0266-5611/27/8/083001 es_ES
dc.description.references Burger, M., Eisenberg, R. S., & Engl, H. W. (2007). Inverse Problems Related to Ion Channel Selectivity. SIAM Journal on Applied Mathematics, 67(4), 960-989. doi:10.1137/060664689 es_ES
dc.description.references Cervera, J., Schiedt, B., & Ramírez, P. (2005). A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores. Europhysics Letters (EPL), 71(1), 35-41. doi:10.1209/epl/i2005-10054-x es_ES
dc.description.references Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797 es_ES
dc.description.references Cervera, J., Alcaraz, A., Schiedt, B., Neumann, R., & Ramírez, P. (2007). Asymmetric Selectivity of Synthetic Conical Nanopores Probed by Reversal Potential Measurements. The Journal of Physical Chemistry C, 111(33), 12265-12273. doi:10.1021/jp071884c es_ES
dc.description.references Lee, S. B., & Martin, C. R. (2001). pH-Switchable, Ion-Permselective Gold Nanotubule Membrane Based on Chemisorbed Cysteine. Analytical Chemistry, 73(4), 768-775. doi:10.1021/ac0008901 es_ES
dc.description.references Pellicer, J., Mafé, S., & Aguilella, V. M. (1986). Ionic Transport Across Porous Charged Membranes and the Goldman Constant Field Assumption. Berichte der Bunsengesellschaft für physikalische Chemie, 90(10), 867-872. doi:10.1002/bbpc.19860901008 es_ES
dc.description.references LAKSHMINARAYANAIAH, N. (1984). ELECTRICAL POTENTIALS ACROSS MEMBRANES. Equations of Membrane Biophysics, 129-164. doi:10.1016/b978-0-12-434260-6.50007-2 es_ES
dc.description.references Cervera, J., Ramírez, P., Manzanares, J. A., & Mafé, S. (2009). Incorporating ionic size in the transport equations for charged nanopores. Microfluidics and Nanofluidics, 9(1), 41-53. doi:10.1007/s10404-009-0518-2 es_ES
dc.description.references Wang, G., Bohaty, A. K., Zharov, I., & White, H. S. (2006). Photon Gated Transport at the Glass Nanopore Electrode. Journal of the American Chemical Society, 128(41), 13553-13558. doi:10.1021/ja064274j es_ES
dc.description.references Eisenberg, R. S. (1996). Computing the Field in Proteins and Channels. Journal of Membrane Biology, 150(1), 1-25. doi:10.1007/s002329900026 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem