- -

Angular bandgaps in sonic crystals: evanescent waves and spatial complex dispersion relation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Angular bandgaps in sonic crystals: evanescent waves and spatial complex dispersion relation

Mostrar el registro completo del ítem

Romero García, V.; Picó Vila, R.; Cebrecos Ruiz, A.; Staliünas, K.; Sánchez Morcillo, VJ. (2013). Angular bandgaps in sonic crystals: evanescent waves and spatial complex dispersion relation. Journal of Vibration and Acoustics. 135(4):410121-410126. https://doi.org/10.1115/1.4023832

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43578

Ficheros en el ítem

Metadatos del ítem

Título: Angular bandgaps in sonic crystals: evanescent waves and spatial complex dispersion relation
Autor: Romero García, Vicente Picó Vila, Rubén Cebrecos Ruiz, Alejandro Staliünas, Kestutis Sánchez Morcillo, Víctor José
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Fecha difusión:
Resumen:
Phononic crystals are artificial materials made of a periodic distribution of solid scatterers embedded into a solid host medium with different physical properties. An interesting case of phononic crystals, known as sonic ...[+]
Palabras clave: PERIODIC ELASTIC COMPOSITES , SOUND-ATTENUATION , STOP-BANDS , CYLINDERS , ARRAYS
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Vibration and Acoustics. (issn: 1048-9002 )
DOI: 10.1115/1.4023832
Editorial:
American Society of Mechanical Engineers (ASME)
Versión del editor: http://dx.doi.org/10.1115/1.4023832
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2009-09438/ES/Optimizacion, Diseño Y Desarrollo Tecnologico De Dispositivos Basados En Cristales De Sonido Para Aplicaciones Medicas Y Medioambientales/ /
info:eu-repo/grantAgreement/UPV//CEI-01-11/
info:eu-repo/grantAgreement/GVA//GV%2F2011%2F055/ES/Control de la Difraccion del Sonido por Estructuras Periodicas o Cuasi-Periodicas/
info:eu-repo/grantAgreement/MICINN//FIS2011-29734-C02-02/ES/CONTROL DE LA DIFRACCION DEL SONIDO EN MEDIOS MODULADOS: FOCALIZACION, FILTRADO ESPACIAL Y OTROS EFECTOS DE CONFORMACION DE HACES TRAS LA TRANSMISION Y REFLEXION/
Agradecimientos:
This work was supported by MCI Secretaria de Estado de Investigacion (Spanish government) and the FEDER funds, under Grant Nos. MAT2009-09438, FIS2011-29734-C02-02, and from Generalitat Valencia through Project No. ...[+]
Tipo: Artículo

References

Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062. doi:10.1103/physrevlett.58.2059

John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/physrevlett.58.2486

Ruffa, A. A. (1992). Acoustic wave propagation through periodic bubbly liquids. The Journal of the Acoustical Society of America, 91(1), 1-11. doi:10.1121/1.402755 [+]
Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062. doi:10.1103/physrevlett.58.2059

John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/physrevlett.58.2486

Ruffa, A. A. (1992). Acoustic wave propagation through periodic bubbly liquids. The Journal of the Acoustical Society of America, 91(1), 1-11. doi:10.1121/1.402755

Sigalas, M. M., & Economou, E. N. (1992). Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158(2), 377-382. doi:10.1016/0022-460x(92)90059-7

Sigalas, M., & Economou, E. N. (1993). Band structure of elastic waves in two dimensional systems. Solid State Communications, 86(3), 141-143. doi:10.1016/0038-1098(93)90888-t

Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022

Kushwaha, M. S., Halevi, P., Martínez, G., Dobrzynski, L., & Djafari-Rouhani, B. (1994). Theory of acoustic band structure of periodic elastic composites. Physical Review B, 49(4), 2313-2322. doi:10.1103/physrevb.49.2313

Sigalas, M. M., Economou, E. N., & Kafesaki, M. (1994). Spectral gaps for electromagnetic and scalar waves: Possible explanation for certain differences. Physical Review B, 50(5), 3393-3396. doi:10.1103/physrevb.50.3393

Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0

Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325

Kushwaha, M. S. (1997). Stop-bands for periodic metallic rods: Sculptures that can filter the noise. Applied Physics Letters, 70(24), 3218-3220. doi:10.1063/1.119130

Robertson, W. M., & Rudy, J. F. (1998). Measurement of acoustic stop bands in two-dimensional periodic scattering arrays. The Journal of the Acoustical Society of America, 104(2), 694-699. doi:10.1121/1.423344

Khelif, A., Choujaa, A., Djafari-Rouhani, B., Wilm, M., Ballandras, S., & Laude, V. (2003). Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Physical Review B, 68(21). doi:10.1103/physrevb.68.214301

Sanchez-Perez, J. V., Rubio, C., Martinez-Sala, R., Sanchez-Grandia, R., & Gomez, V. (2002). Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters, 81(27), 5240-5242. doi:10.1063/1.1533112

Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2011). Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems. Journal of Applied Physics, 110(1), 014904. doi:10.1063/1.3599886

Qiu, C., Liu, Z., Shi, J., & Chan, C. T. (2005). Directional acoustic source based on the resonant cavity of two-dimensional phononic crystals. Applied Physics Letters, 86(22), 224105. doi:10.1063/1.1942642

Qiu, C., & Liu, Z. (2006). Acoustic directional radiation and enhancement caused by band-edge states of two-dimensional phononic crystals. Applied Physics Letters, 89(6), 063106. doi:10.1063/1.2335975

Sigalas, M. M. (1998). Defect states of acoustic waves in a two-dimensional lattice of solid cylinders. Journal of Applied Physics, 84(6), 3026-3030. doi:10.1063/1.368456

Tanaka, Y., Yano, T., & Tamura, S. (2007). Surface guided waves in two-dimensional phononic crystals. Wave Motion, 44(6), 501-512. doi:10.1016/j.wavemoti.2007.02.009

Vasseur, J. O., Deymier, P. A., Djafari-Rouhani, B., Pennec, Y., & Hladky-Hennion, A.-C. (2008). Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates. Physical Review B, 77(8). doi:10.1103/physrevb.77.085415

Zhao, Y.-C., & Yuan, L.-B. (2008). Characteristics of multi-point defect modes in 2D phononic crystals. Journal of Physics D: Applied Physics, 42(1), 015403. doi:10.1088/0022-3727/42/1/015403

Wu, L.-Y., Chen, L.-W., & Liu, C.-M. (2009). Experimental investigation of the acoustic pressure in cavity of a two-dimensional sonic crystal. Physica B: Condensed Matter, 404(12-13), 1766-1770. doi:10.1016/j.physb.2009.02.025

Hussein, M. I. (2009). Theory of damped Bloch waves in elastic media. Physical Review B, 80(21). doi:10.1103/physrevb.80.212301

Romero-García, V., Vasseur, J. O., Hladky-Hennion, A. C., Garcia-Raffi, L. M., & Sánchez-Pérez, J. V. (2011). Level repulsion and evanescent waves in sonic crystals. Physical Review B, 84(21). doi:10.1103/physrevb.84.212302

Farzbod, F., & Leamy, M. J. (2011). Analysis of Bloch’s Method in Structures with Energy Dissipation. Journal of Vibration and Acoustics, 133(5). doi:10.1115/1.4003943

Laude, V., Moiseyenko, R. P., Benchabane, S., & Declercq, N. F. (2011). Bloch wave deafness and modal conversion at a phononic crystal boundary. AIP Advances, 1(4), 041402. doi:10.1063/1.3675828

Moiseyenko, R. P., Herbison, S., Declercq, N. F., & Laude, V. (2012). Phononic crystal diffraction gratings. Journal of Applied Physics, 111(3), 034907. doi:10.1063/1.3682113

Romero-García, V., Vasseur, J. O., Garcia-Raffi, L. M., & Hladky-Hennion, A. C. (2012). Theoretical and experimental evidence of level repulsion states and evanescent modes in sonic crystal stubbed waveguides. New Journal of Physics, 14(2), 023049. doi:10.1088/1367-2630/14/2/023049

Sánchez-Morcillo, V. J., Staliunas, K., Espinosa, V., Pérez-Arjona, I., Redondo, J., & Soliveres, E. (2009). Propagation of sound beams behind sonic crystals. Physical Review B, 80(13). doi:10.1103/physrevb.80.134303

Rakich, P. T., Dahlem, M. S., Tandon, S., Ibanescu, M., Soljačić, M., Petrich, G. S., … Ippen, E. P. (2006). Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal. Nature Materials, 5(2), 93-96. doi:10.1038/nmat1568

Lu, Z., Shi, S., Murakowski, J. A., Schneider, G. J., Schuetz, C. A., & Prather, D. W. (2006). Experimental Demonstration of Self-Collimation inside a Three-Dimensional Photonic Crystal. Physical Review Letters, 96(17). doi:10.1103/physrevlett.96.173902

Pérez-Arjona, I., Sánchez-Morcillo, V. J., Redondo, J., Espinosa, V., & Staliunas, K. (2007). Theoretical prediction of the nondiffractive propagation of sonic waves through periodic acoustic media. Physical Review B, 75(1). doi:10.1103/physrevb.75.014304

Espinosa, V., Sánchez-Morcillo, V. J., Staliunas, K., Pérez-Arjona, I., & Redondo, J. (2007). Subdiffractive propagation of ultrasound in sonic crystals. Physical Review B, 76(14). doi:10.1103/physrevb.76.140302

Luo, C., Johnson, S. G., Joannopoulos, J. D., & Pendry, J. B. (2002). All-angle negative refraction without negative effective index. Physical Review B, 65(20). doi:10.1103/physrevb.65.201104

Luo, C., Johnson, S. G., Joannopoulos, J. D., & Pendry, J. B. (2003). Subwavelength imaging in photonic crystals. Physical Review B, 68(4). doi:10.1103/physrevb.68.045115

Yang, S., Page, J. H., Liu, Z., Cowan, M. L., Chan, C. T., & Sheng, P. (2004). Focusing of Sound in a 3D Phononic Crystal. Physical Review Letters, 93(2). doi:10.1103/physrevlett.93.024301

Ke, M., Liu, Z., Qiu, C., Wang, W., Shi, J., Wen, W., & Sheng, P. (2005). Negative-refraction imaging with two-dimensional phononic crystals. Physical Review B, 72(6). doi:10.1103/physrevb.72.064306

Feng, L., Liu, X.-P., Chen, Y.-B., Huang, Z.-P., Mao, Y.-W., Chen, Y.-F., … Zhu, Y.-Y. (2005). Negative refraction of acoustic waves in two-dimensional sonic crystals. Physical Review B, 72(3). doi:10.1103/physrevb.72.033108

Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Evanescent modes in sonic crystals: Complex dispersion relation and supercell approximation. Journal of Applied Physics, 108(4), 044907. doi:10.1063/1.3466988

Laude, V., Achaoui, Y., Benchabane, S., & Khelif, A. (2009). Evanescent Bloch waves and the complex band structure of phononic crystals. Physical Review B, 80(9). doi:10.1103/physrevb.80.092301

Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Propagating and evanescent properties of double-point defects in sonic crystals. New Journal of Physics, 12(8), 083024. doi:10.1088/1367-2630/12/8/083024

Romero-García, V., Sánchez-Pérez, J. V., Castiñeira-Ibáñez, S., & Garcia-Raffi, L. M. (2010). Evidences of evanescent Bloch waves in phononic crystals. Applied Physics Letters, 96(12), 124102. doi:10.1063/1.3367739

Romero-García, V., Garcia-Raffi, L. M., & Sánchez-Pérez, J. V. (2011). Evanescent waves and deaf bands in sonic crystals. AIP Advances, 1(4), 041601. doi:10.1063/1.3675801

Li, J., & Chan, C. T. (2004). Double-negative acoustic metamaterial. Physical Review E, 70(5). doi:10.1103/physreve.70.055602

Guenneau, S., Movchan, A., Pétursson, G., & Anantha Ramakrishna, S. (2007). Acoustic metamaterials for sound focusing and confinement. New Journal of Physics, 9(11), 399-399. doi:10.1088/1367-2630/9/11/399

Farhat, M., Guenneau, S., Enoch, S., Tayeb, G., Movchan, A. B., & Movchan, N. V. (2008). Analytical and numerical analysis of lensing effect for linear surface water waves through a square array of nearly touching rigid square cylinders. Physical Review E, 77(4). doi:10.1103/physreve.77.046308

Hsue, Y.-C., Freeman, A. J., & Gu, B.-Y. (2005). Extended plane-wave expansion method in three-dimensional anisotropic photonic crystals. Physical Review B, 72(19). doi:10.1103/physrevb.72.195118

Chen, Y.-Y., & Ye, Z. (2001). Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays. Physical Review E, 64(3). doi:10.1103/physreve.64.036616

McGaughey, A. J. H., Hussein, M. I., Landry, E. S., Kaviany, M., & Hulbert, G. M. (2006). Phonon band structure and thermal transport correlation in a layered diatomic crystal. Physical Review B, 74(10). doi:10.1103/physrevb.74.104304

Landry, E. S., Hussein, M. I., & McGaughey, A. J. H. (2008). Complex superlattice unit cell designs for reduced thermal conductivity. Physical Review B, 77(18). doi:10.1103/physrevb.77.184302

Hopkins, P. E., Reinke, C. M., Su, M. F., Olsson, R. H., Shaner, E. A., Leseman, Z. C., … El-Kady, I. (2011). Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning. Nano Letters, 11(1), 107-112. doi:10.1021/nl102918q

Davis, B. L., & Hussein, M. I. (2011). Thermal characterization of nanoscale phononic crystals using supercell lattice dynamics. AIP Advances, 1(4), 041701. doi:10.1063/1.3675798

Gorishnyy, T., Ullal, C. K., Maldovan, M., Fytas, G., & Thomas, E. L. (2005). Hypersonic Phononic Crystals. Physical Review Letters, 94(11). doi:10.1103/physrevlett.94.115501

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem