- -

Angular bandgaps in sonic crystals: evanescent waves and spatial complex dispersion relation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Angular bandgaps in sonic crystals: evanescent waves and spatial complex dispersion relation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero García, Vicente es_ES
dc.contributor.author Picó Vila, Rubén es_ES
dc.contributor.author Cebrecos Ruiz, Alejandro es_ES
dc.contributor.author Staliünas, Kestutis es_ES
dc.contributor.author Sánchez Morcillo, Víctor José es_ES
dc.date.accessioned 2014-10-24T17:04:19Z
dc.date.issued 2013-08
dc.identifier.issn 1048-9002
dc.identifier.uri http://hdl.handle.net/10251/43578
dc.description.abstract Phononic crystals are artificial materials made of a periodic distribution of solid scatterers embedded into a solid host medium with different physical properties. An interesting case of phononic crystals, known as sonic crystals (SCs), appears when the solid scatterers are periodically embedded in a fluid medium. In SCs only longitudinal modes are allowed to propagate and both the theoretical and the experimental studies of the properties of the system are simplified without loss of generality. The most celebrated property of these systems is perhaps the existence of spectral band gaps. However, the periodicity of the system can also affect to the spatial dispersion, making possible the control of the diffraction inside these structures. In this work we study the main features of the spatial dispersion in SCs from a novel point of view taking into account the evanescent properties of the system, i.e., studying the complex spatial dispersion relations. The evanescent behavior of the propagation of waves in the angular band gaps are theoretically and experimentally observed in this work. Both the numerical predictions and the experimental results show the presence of angular band gaps in good agreement with the complex spatial dispersion relation. The results shown in this work are independent of the spatial scale of the structure, and in principle the fundamental role of the evanescent waves could be also expected in micro- or nanoscale phononic crystals. es_ES
dc.description.sponsorship This work was supported by MCI Secretaria de Estado de Investigacion (Spanish government) and the FEDER funds, under Grant Nos. MAT2009-09438, FIS2011-29734-C02-02, and from Generalitat Valencia through Project No. GV/2011/055. V.R.G. is grateful for the support of "Programa de Contratos Post-Doctorales con Movilidad UPV (CEI-01-11)." We acknowledge the Centro de Tecnologias Fisicas: Acustica, Materiales y Astrofisica and the Sonic Crystal Technologies Research Group of the Universitat Politecnica de Valencia for the use of the anechoic chamber and the 3DReAMS respectively. en_EN
dc.language Inglés es_ES
dc.publisher American Society of Mechanical Engineers (ASME) es_ES
dc.relation.ispartof Journal of Vibration and Acoustics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject PERIODIC ELASTIC COMPOSITES es_ES
dc.subject SOUND-ATTENUATION es_ES
dc.subject STOP-BANDS es_ES
dc.subject CYLINDERS es_ES
dc.subject ARRAYS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Angular bandgaps in sonic crystals: evanescent waves and spatial complex dispersion relation es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1115/1.4023832
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-09438/ES/Optimizacion, Diseño Y Desarrollo Tecnologico De Dispositivos Basados En Cristales De Sonido Para Aplicaciones Medicas Y Medioambientales/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//CEI-01-11/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2011%2F055/ES/Control de la Difraccion del Sonido por Estructuras Periodicas o Cuasi-Periodicas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2011-29734-C02-02/ES/CONTROL DE LA DIFRACCION DEL SONIDO EN MEDIOS MODULADOS: FOCALIZACION, FILTRADO ESPACIAL Y OTROS EFECTOS DE CONFORMACION DE HACES TRAS LA TRANSMISION Y REFLEXION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Romero García, V.; Picó Vila, R.; Cebrecos Ruiz, A.; Staliünas, K.; Sánchez Morcillo, VJ. (2013). Angular bandgaps in sonic crystals: evanescent waves and spatial complex dispersion relation. Journal of Vibration and Acoustics. 135(4):410121-410126. https://doi.org/10.1115/1.4023832 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1115/1.4023832 es_ES
dc.description.upvformatpinicio 410121 es_ES
dc.description.upvformatpfin 410126 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 135 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 255856
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062. doi:10.1103/physrevlett.58.2059 es_ES
dc.description.references John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/physrevlett.58.2486 es_ES
dc.description.references Ruffa, A. A. (1992). Acoustic wave propagation through periodic bubbly liquids. The Journal of the Acoustical Society of America, 91(1), 1-11. doi:10.1121/1.402755 es_ES
dc.description.references Sigalas, M. M., & Economou, E. N. (1992). Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158(2), 377-382. doi:10.1016/0022-460x(92)90059-7 es_ES
dc.description.references Sigalas, M., & Economou, E. N. (1993). Band structure of elastic waves in two dimensional systems. Solid State Communications, 86(3), 141-143. doi:10.1016/0038-1098(93)90888-t es_ES
dc.description.references Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022 es_ES
dc.description.references Kushwaha, M. S., Halevi, P., Martínez, G., Dobrzynski, L., & Djafari-Rouhani, B. (1994). Theory of acoustic band structure of periodic elastic composites. Physical Review B, 49(4), 2313-2322. doi:10.1103/physrevb.49.2313 es_ES
dc.description.references Sigalas, M. M., Economou, E. N., & Kafesaki, M. (1994). Spectral gaps for electromagnetic and scalar waves: Possible explanation for certain differences. Physical Review B, 50(5), 3393-3396. doi:10.1103/physrevb.50.3393 es_ES
dc.description.references Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0 es_ES
dc.description.references Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325 es_ES
dc.description.references Kushwaha, M. S. (1997). Stop-bands for periodic metallic rods: Sculptures that can filter the noise. Applied Physics Letters, 70(24), 3218-3220. doi:10.1063/1.119130 es_ES
dc.description.references Robertson, W. M., & Rudy, J. F. (1998). Measurement of acoustic stop bands in two-dimensional periodic scattering arrays. The Journal of the Acoustical Society of America, 104(2), 694-699. doi:10.1121/1.423344 es_ES
dc.description.references Khelif, A., Choujaa, A., Djafari-Rouhani, B., Wilm, M., Ballandras, S., & Laude, V. (2003). Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Physical Review B, 68(21). doi:10.1103/physrevb.68.214301 es_ES
dc.description.references Sanchez-Perez, J. V., Rubio, C., Martinez-Sala, R., Sanchez-Grandia, R., & Gomez, V. (2002). Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters, 81(27), 5240-5242. doi:10.1063/1.1533112 es_ES
dc.description.references Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2011). Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems. Journal of Applied Physics, 110(1), 014904. doi:10.1063/1.3599886 es_ES
dc.description.references Qiu, C., Liu, Z., Shi, J., & Chan, C. T. (2005). Directional acoustic source based on the resonant cavity of two-dimensional phononic crystals. Applied Physics Letters, 86(22), 224105. doi:10.1063/1.1942642 es_ES
dc.description.references Qiu, C., & Liu, Z. (2006). Acoustic directional radiation and enhancement caused by band-edge states of two-dimensional phononic crystals. Applied Physics Letters, 89(6), 063106. doi:10.1063/1.2335975 es_ES
dc.description.references Sigalas, M. M. (1998). Defect states of acoustic waves in a two-dimensional lattice of solid cylinders. Journal of Applied Physics, 84(6), 3026-3030. doi:10.1063/1.368456 es_ES
dc.description.references Tanaka, Y., Yano, T., & Tamura, S. (2007). Surface guided waves in two-dimensional phononic crystals. Wave Motion, 44(6), 501-512. doi:10.1016/j.wavemoti.2007.02.009 es_ES
dc.description.references Vasseur, J. O., Deymier, P. A., Djafari-Rouhani, B., Pennec, Y., & Hladky-Hennion, A.-C. (2008). Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates. Physical Review B, 77(8). doi:10.1103/physrevb.77.085415 es_ES
dc.description.references Zhao, Y.-C., & Yuan, L.-B. (2008). Characteristics of multi-point defect modes in 2D phononic crystals. Journal of Physics D: Applied Physics, 42(1), 015403. doi:10.1088/0022-3727/42/1/015403 es_ES
dc.description.references Wu, L.-Y., Chen, L.-W., & Liu, C.-M. (2009). Experimental investigation of the acoustic pressure in cavity of a two-dimensional sonic crystal. Physica B: Condensed Matter, 404(12-13), 1766-1770. doi:10.1016/j.physb.2009.02.025 es_ES
dc.description.references Hussein, M. I. (2009). Theory of damped Bloch waves in elastic media. Physical Review B, 80(21). doi:10.1103/physrevb.80.212301 es_ES
dc.description.references Romero-García, V., Vasseur, J. O., Hladky-Hennion, A. C., Garcia-Raffi, L. M., & Sánchez-Pérez, J. V. (2011). Level repulsion and evanescent waves in sonic crystals. Physical Review B, 84(21). doi:10.1103/physrevb.84.212302 es_ES
dc.description.references Farzbod, F., & Leamy, M. J. (2011). Analysis of Bloch’s Method in Structures with Energy Dissipation. Journal of Vibration and Acoustics, 133(5). doi:10.1115/1.4003943 es_ES
dc.description.references Laude, V., Moiseyenko, R. P., Benchabane, S., & Declercq, N. F. (2011). Bloch wave deafness and modal conversion at a phononic crystal boundary. AIP Advances, 1(4), 041402. doi:10.1063/1.3675828 es_ES
dc.description.references Moiseyenko, R. P., Herbison, S., Declercq, N. F., & Laude, V. (2012). Phononic crystal diffraction gratings. Journal of Applied Physics, 111(3), 034907. doi:10.1063/1.3682113 es_ES
dc.description.references Romero-García, V., Vasseur, J. O., Garcia-Raffi, L. M., & Hladky-Hennion, A. C. (2012). Theoretical and experimental evidence of level repulsion states and evanescent modes in sonic crystal stubbed waveguides. New Journal of Physics, 14(2), 023049. doi:10.1088/1367-2630/14/2/023049 es_ES
dc.description.references Sánchez-Morcillo, V. J., Staliunas, K., Espinosa, V., Pérez-Arjona, I., Redondo, J., & Soliveres, E. (2009). Propagation of sound beams behind sonic crystals. Physical Review B, 80(13). doi:10.1103/physrevb.80.134303 es_ES
dc.description.references Rakich, P. T., Dahlem, M. S., Tandon, S., Ibanescu, M., Soljačić, M., Petrich, G. S., … Ippen, E. P. (2006). Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal. Nature Materials, 5(2), 93-96. doi:10.1038/nmat1568 es_ES
dc.description.references Lu, Z., Shi, S., Murakowski, J. A., Schneider, G. J., Schuetz, C. A., & Prather, D. W. (2006). Experimental Demonstration of Self-Collimation inside a Three-Dimensional Photonic Crystal. Physical Review Letters, 96(17). doi:10.1103/physrevlett.96.173902 es_ES
dc.description.references Pérez-Arjona, I., Sánchez-Morcillo, V. J., Redondo, J., Espinosa, V., & Staliunas, K. (2007). Theoretical prediction of the nondiffractive propagation of sonic waves through periodic acoustic media. Physical Review B, 75(1). doi:10.1103/physrevb.75.014304 es_ES
dc.description.references Espinosa, V., Sánchez-Morcillo, V. J., Staliunas, K., Pérez-Arjona, I., & Redondo, J. (2007). Subdiffractive propagation of ultrasound in sonic crystals. Physical Review B, 76(14). doi:10.1103/physrevb.76.140302 es_ES
dc.description.references Luo, C., Johnson, S. G., Joannopoulos, J. D., & Pendry, J. B. (2002). All-angle negative refraction without negative effective index. Physical Review B, 65(20). doi:10.1103/physrevb.65.201104 es_ES
dc.description.references Luo, C., Johnson, S. G., Joannopoulos, J. D., & Pendry, J. B. (2003). Subwavelength imaging in photonic crystals. Physical Review B, 68(4). doi:10.1103/physrevb.68.045115 es_ES
dc.description.references Yang, S., Page, J. H., Liu, Z., Cowan, M. L., Chan, C. T., & Sheng, P. (2004). Focusing of Sound in a 3D Phononic Crystal. Physical Review Letters, 93(2). doi:10.1103/physrevlett.93.024301 es_ES
dc.description.references Ke, M., Liu, Z., Qiu, C., Wang, W., Shi, J., Wen, W., & Sheng, P. (2005). Negative-refraction imaging with two-dimensional phononic crystals. Physical Review B, 72(6). doi:10.1103/physrevb.72.064306 es_ES
dc.description.references Feng, L., Liu, X.-P., Chen, Y.-B., Huang, Z.-P., Mao, Y.-W., Chen, Y.-F., … Zhu, Y.-Y. (2005). Negative refraction of acoustic waves in two-dimensional sonic crystals. Physical Review B, 72(3). doi:10.1103/physrevb.72.033108 es_ES
dc.description.references Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Evanescent modes in sonic crystals: Complex dispersion relation and supercell approximation. Journal of Applied Physics, 108(4), 044907. doi:10.1063/1.3466988 es_ES
dc.description.references Laude, V., Achaoui, Y., Benchabane, S., & Khelif, A. (2009). Evanescent Bloch waves and the complex band structure of phononic crystals. Physical Review B, 80(9). doi:10.1103/physrevb.80.092301 es_ES
dc.description.references Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Propagating and evanescent properties of double-point defects in sonic crystals. New Journal of Physics, 12(8), 083024. doi:10.1088/1367-2630/12/8/083024 es_ES
dc.description.references Romero-García, V., Sánchez-Pérez, J. V., Castiñeira-Ibáñez, S., & Garcia-Raffi, L. M. (2010). Evidences of evanescent Bloch waves in phononic crystals. Applied Physics Letters, 96(12), 124102. doi:10.1063/1.3367739 es_ES
dc.description.references Romero-García, V., Garcia-Raffi, L. M., & Sánchez-Pérez, J. V. (2011). Evanescent waves and deaf bands in sonic crystals. AIP Advances, 1(4), 041601. doi:10.1063/1.3675801 es_ES
dc.description.references Li, J., & Chan, C. T. (2004). Double-negative acoustic metamaterial. Physical Review E, 70(5). doi:10.1103/physreve.70.055602 es_ES
dc.description.references Guenneau, S., Movchan, A., Pétursson, G., & Anantha Ramakrishna, S. (2007). Acoustic metamaterials for sound focusing and confinement. New Journal of Physics, 9(11), 399-399. doi:10.1088/1367-2630/9/11/399 es_ES
dc.description.references Farhat, M., Guenneau, S., Enoch, S., Tayeb, G., Movchan, A. B., & Movchan, N. V. (2008). Analytical and numerical analysis of lensing effect for linear surface water waves through a square array of nearly touching rigid square cylinders. Physical Review E, 77(4). doi:10.1103/physreve.77.046308 es_ES
dc.description.references Hsue, Y.-C., Freeman, A. J., & Gu, B.-Y. (2005). Extended plane-wave expansion method in three-dimensional anisotropic photonic crystals. Physical Review B, 72(19). doi:10.1103/physrevb.72.195118 es_ES
dc.description.references Chen, Y.-Y., & Ye, Z. (2001). Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays. Physical Review E, 64(3). doi:10.1103/physreve.64.036616 es_ES
dc.description.references McGaughey, A. J. H., Hussein, M. I., Landry, E. S., Kaviany, M., & Hulbert, G. M. (2006). Phonon band structure and thermal transport correlation in a layered diatomic crystal. Physical Review B, 74(10). doi:10.1103/physrevb.74.104304 es_ES
dc.description.references Landry, E. S., Hussein, M. I., & McGaughey, A. J. H. (2008). Complex superlattice unit cell designs for reduced thermal conductivity. Physical Review B, 77(18). doi:10.1103/physrevb.77.184302 es_ES
dc.description.references Hopkins, P. E., Reinke, C. M., Su, M. F., Olsson, R. H., Shaner, E. A., Leseman, Z. C., … El-Kady, I. (2011). Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning. Nano Letters, 11(1), 107-112. doi:10.1021/nl102918q es_ES
dc.description.references Davis, B. L., & Hussein, M. I. (2011). Thermal characterization of nanoscale phononic crystals using supercell lattice dynamics. AIP Advances, 1(4), 041701. doi:10.1063/1.3675798 es_ES
dc.description.references Gorishnyy, T., Ullal, C. K., Maldovan, M., Fytas, G., & Thomas, E. L. (2005). Hypersonic Phononic Crystals. Physical Review Letters, 94(11). doi:10.1103/physrevlett.94.115501 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem