- -

New common fixed point theorems for multivalued maps

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New common fixed point theorems for multivalued maps

Mostrar el registro completo del ítem

Kamal, R.; Chugh, R.; Singh, SL.; Mishra, SN. (2014). New common fixed point theorems for multivalued maps. Applied General Topology. 15(2):111-119. https://doi.org/10.4995/agt.2014.2815

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43610

Ficheros en el ítem

Metadatos del ítem

Título: New common fixed point theorems for multivalued maps
Autor: Kamal, Raj Chugh, Renu Singh, S. L. Mishra, Swami Nath
Fecha difusión:
Resumen:
[EN] Common fixed point theorems for a new class of multivalued maps are obtained, which generalize and extend classical fixed point theorems of Nadler and Reich and some recent Suzuki type fixed point theorems.
Palabras clave: Fixed point , Banach contraction theorem , Hausdorff metric space
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2014.2815
Editorial:
Editorial Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2014.2815
Tipo: Artículo

References

Assad, N., & Kirk, W. (1972). Fixed point theorems for set-valued mappings of contractive type. Pacific Journal of Mathematics, 43(3), 553-562. doi:10.2140/pjm.1972.43.553

Lj. B. Ciric, Fixed points for generalized multivalued contractions, Mat. Vesnik 9, no. 24 (1972), 265-272.

Ciric, L. B. (1974). A Generalization of Banach’s Contraction Principle. Proceedings of the American Mathematical Society, 45(2), 267. doi:10.2307/2040075 [+]
Assad, N., & Kirk, W. (1972). Fixed point theorems for set-valued mappings of contractive type. Pacific Journal of Mathematics, 43(3), 553-562. doi:10.2140/pjm.1972.43.553

Lj. B. Ciric, Fixed points for generalized multivalued contractions, Mat. Vesnik 9, no. 24 (1972), 265-272.

Ciric, L. B. (1974). A Generalization of Banach’s Contraction Principle. Proceedings of the American Mathematical Society, 45(2), 267. doi:10.2307/2040075

Damjanovic, B., & Djoric, D. (2011). Multivalued generalizations of the Kannan fixed point theorem. Filomat, 25(1), 125-131. doi:10.2298/fil1101125d

Kikkawa, M., & Suzuki, T. (2008). Three fixed point theorems for generalized contractions with constants in complete metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 69(9), 2942-2949. doi:10.1016/j.na.2007.08.064

M. Kikkawa and T. Suzuki, Some notes on fixed point theorems with constants, Bull. Kyushu Inst. Technol. Pure Appl. Math. 56 (2009), 11-18.

Moţ, G., & Petruşel, A. (2009). Fixed point theory for a new type of contractive multivalued operators. Nonlinear Analysis: Theory, Methods & Applications, 70(9), 3371-3377. doi:10.1016/j.na.2008.05.005

Nadler, S. (1969). Multi-valued contraction mappings. Pacific Journal of Mathematics, 30(2), 475-488. doi:10.2140/pjm.1969.30.475

S. B. Nadler, Hyperspaces of Sets, Marcel Dekker, New York, 1978.

Popescu, O. (2009). Two fixed point theorems for generalized contractions with constants in complete metric space. Central European Journal of Mathematics, 7(3), 529-538. doi:10.2478/s11533-009-0019-2

S. Reich, Fixed points of multi-valued functions. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 51, no. 8 (1971), 32-35.

Rhoades, B. E. (1977). A comparison of various definitions of contractive mappings. Transactions of the American Mathematical Society, 226, 257-257. doi:10.1090/s0002-9947-1977-0433430-4

I. A. Rus, Fixed point theorems for multivalued mappings in complete metric spaces, Math. Japon. 20 (1975), 21-24.

I. A. Rus, Generalized Contractions And Applications, Cluj-Napoca, 2001.

K. P. R. Sastry and S. V. R. Naidu, Fixed point theorems for generalized contraction mappings, Yokohama Math. J. 25 (1980), 15-29.

Singh, S. L., & Mishra, S. N. (2011). Fixed point theorems for single-valued and multi-valued maps. Nonlinear Analysis: Theory, Methods & Applications, 74(6), 2243-2248. doi:10.1016/j.na.2010.11.029

Suzuki, T. (2007). A generalized Banach contraction principle that characterizes metric completeness. Proceedings of the American Mathematical Society, 136(05), 1861-1870. doi:10.1090/s0002-9939-07-09055-7

Suzuki, T. (2009). A new type of fixed point theorem in metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 71(11), 5313-5317. doi:10.1016/j.na.2009.04.017

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem