Assad, N., & Kirk, W. (1972). Fixed point theorems for set-valued mappings of contractive type. Pacific Journal of Mathematics, 43(3), 553-562. doi:10.2140/pjm.1972.43.553
Lj. B. Ciric, Fixed points for generalized multivalued contractions, Mat. Vesnik 9, no. 24 (1972), 265-272.
Ciric, L. B. (1974). A Generalization of Banach’s Contraction Principle. Proceedings of the American Mathematical Society, 45(2), 267. doi:10.2307/2040075
[+]
Assad, N., & Kirk, W. (1972). Fixed point theorems for set-valued mappings of contractive type. Pacific Journal of Mathematics, 43(3), 553-562. doi:10.2140/pjm.1972.43.553
Lj. B. Ciric, Fixed points for generalized multivalued contractions, Mat. Vesnik 9, no. 24 (1972), 265-272.
Ciric, L. B. (1974). A Generalization of Banach’s Contraction Principle. Proceedings of the American Mathematical Society, 45(2), 267. doi:10.2307/2040075
Damjanovic, B., & Djoric, D. (2011). Multivalued generalizations of the Kannan fixed point theorem. Filomat, 25(1), 125-131. doi:10.2298/fil1101125d
Kikkawa, M., & Suzuki, T. (2008). Three fixed point theorems for generalized contractions with constants in complete metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 69(9), 2942-2949. doi:10.1016/j.na.2007.08.064
M. Kikkawa and T. Suzuki, Some notes on fixed point theorems with constants, Bull. Kyushu Inst. Technol. Pure Appl. Math. 56 (2009), 11-18.
Moţ, G., & Petruşel, A. (2009). Fixed point theory for a new type of contractive multivalued operators. Nonlinear Analysis: Theory, Methods & Applications, 70(9), 3371-3377. doi:10.1016/j.na.2008.05.005
Nadler, S. (1969). Multi-valued contraction mappings. Pacific Journal of Mathematics, 30(2), 475-488. doi:10.2140/pjm.1969.30.475
S. B. Nadler, Hyperspaces of Sets, Marcel Dekker, New York, 1978.
Popescu, O. (2009). Two fixed point theorems for generalized contractions with constants in complete metric space. Central European Journal of Mathematics, 7(3), 529-538. doi:10.2478/s11533-009-0019-2
S. Reich, Fixed points of multi-valued functions. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 51, no. 8 (1971), 32-35.
Rhoades, B. E. (1977). A comparison of various definitions of contractive mappings. Transactions of the American Mathematical Society, 226, 257-257. doi:10.1090/s0002-9947-1977-0433430-4
I. A. Rus, Fixed point theorems for multivalued mappings in complete metric spaces, Math. Japon. 20 (1975), 21-24.
I. A. Rus, Generalized Contractions And Applications, Cluj-Napoca, 2001.
K. P. R. Sastry and S. V. R. Naidu, Fixed point theorems for generalized contraction mappings, Yokohama Math. J. 25 (1980), 15-29.
Singh, S. L., & Mishra, S. N. (2011). Fixed point theorems for single-valued and multi-valued maps. Nonlinear Analysis: Theory, Methods & Applications, 74(6), 2243-2248. doi:10.1016/j.na.2010.11.029
Suzuki, T. (2007). A generalized Banach contraction principle that characterizes metric completeness. Proceedings of the American Mathematical Society, 136(05), 1861-1870. doi:10.1090/s0002-9939-07-09055-7
Suzuki, T. (2009). A new type of fixed point theorem in metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 71(11), 5313-5317. doi:10.1016/j.na.2009.04.017
[-]