- -

New common fixed point theorems for multivalued maps

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New common fixed point theorems for multivalued maps

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kamal, Raj es_ES
dc.contributor.author Chugh, Renu es_ES
dc.contributor.author Singh, S. L. es_ES
dc.contributor.author Mishra, Swami Nath
dc.date.accessioned 2014-10-27T16:33:36Z
dc.date.available 2014-10-27T16:33:36Z
dc.date.issued 2014-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/43610
dc.description.abstract [EN] Common fixed point theorems for a new class of multivalued maps are obtained, which generalize and extend classical fixed point theorems of Nadler and Reich and some recent Suzuki type fixed point theorems. es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fixed point es_ES
dc.subject Banach contraction theorem es_ES
dc.subject Hausdorff metric space es_ES
dc.title New common fixed point theorems for multivalued maps es_ES
dc.type Artículo es_ES
dc.date.updated 2014-10-27T16:25:09Z
dc.identifier.doi 10.4995/agt.2014.2815
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Kamal, R.; Chugh, R.; Singh, SL.; Mishra, SN. (2014). New common fixed point theorems for multivalued maps. Applied General Topology. 15(2):111-119. https://doi.org/10.4995/agt.2014.2815 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2014.2815 es_ES
dc.description.upvformatpinicio 111 es_ES
dc.description.upvformatpfin 119 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.description.references Assad, N., & Kirk, W. (1972). Fixed point theorems for set-valued mappings of contractive type. Pacific Journal of Mathematics, 43(3), 553-562. doi:10.2140/pjm.1972.43.553 es_ES
dc.description.references Lj. B. Ciric, Fixed points for generalized multivalued contractions, Mat. Vesnik 9, no. 24 (1972), 265-272. es_ES
dc.description.references Ciric, L. B. (1974). A Generalization of Banach’s Contraction Principle. Proceedings of the American Mathematical Society, 45(2), 267. doi:10.2307/2040075 es_ES
dc.description.references Damjanovic, B., & Djoric, D. (2011). Multivalued generalizations of the Kannan fixed point theorem. Filomat, 25(1), 125-131. doi:10.2298/fil1101125d es_ES
dc.description.references Kikkawa, M., & Suzuki, T. (2008). Three fixed point theorems for generalized contractions with constants in complete metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 69(9), 2942-2949. doi:10.1016/j.na.2007.08.064 es_ES
dc.description.references M. Kikkawa and T. Suzuki, Some notes on fixed point theorems with constants, Bull. Kyushu Inst. Technol. Pure Appl. Math. 56 (2009), 11-18. es_ES
dc.description.references Moţ, G., & Petruşel, A. (2009). Fixed point theory for a new type of contractive multivalued operators. Nonlinear Analysis: Theory, Methods & Applications, 70(9), 3371-3377. doi:10.1016/j.na.2008.05.005 es_ES
dc.description.references Nadler, S. (1969). Multi-valued contraction mappings. Pacific Journal of Mathematics, 30(2), 475-488. doi:10.2140/pjm.1969.30.475 es_ES
dc.description.references S. B. Nadler, Hyperspaces of Sets, Marcel Dekker, New York, 1978. es_ES
dc.description.references Popescu, O. (2009). Two fixed point theorems for generalized contractions with constants in complete metric space. Central European Journal of Mathematics, 7(3), 529-538. doi:10.2478/s11533-009-0019-2 es_ES
dc.description.references S. Reich, Fixed points of multi-valued functions. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 51, no. 8 (1971), 32-35. es_ES
dc.description.references Rhoades, B. E. (1977). A comparison of various definitions of contractive mappings. Transactions of the American Mathematical Society, 226, 257-257. doi:10.1090/s0002-9947-1977-0433430-4 es_ES
dc.description.references I. A. Rus, Fixed point theorems for multivalued mappings in complete metric spaces, Math. Japon. 20 (1975), 21-24. es_ES
dc.description.references I. A. Rus, Generalized Contractions And Applications, Cluj-Napoca, 2001. es_ES
dc.description.references K. P. R. Sastry and S. V. R. Naidu, Fixed point theorems for generalized contraction mappings, Yokohama Math. J. 25 (1980), 15-29. es_ES
dc.description.references Singh, S. L., & Mishra, S. N. (2011). Fixed point theorems for single-valued and multi-valued maps. Nonlinear Analysis: Theory, Methods & Applications, 74(6), 2243-2248. doi:10.1016/j.na.2010.11.029 es_ES
dc.description.references Suzuki, T. (2007). A generalized Banach contraction principle that characterizes metric completeness. Proceedings of the American Mathematical Society, 136(05), 1861-1870. doi:10.1090/s0002-9939-07-09055-7 es_ES
dc.description.references Suzuki, T. (2009). A new type of fixed point theorem in metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 71(11), 5313-5317. doi:10.1016/j.na.2009.04.017 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem