Mostrar el registro sencillo del ítem
dc.contributor.author | Kamal, Raj | es_ES |
dc.contributor.author | Chugh, Renu | es_ES |
dc.contributor.author | Singh, S. L. | es_ES |
dc.contributor.author | Mishra, Swami Nath | |
dc.date.accessioned | 2014-10-27T16:33:36Z | |
dc.date.available | 2014-10-27T16:33:36Z | |
dc.date.issued | 2014-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/43610 | |
dc.description.abstract | [EN] Common fixed point theorems for a new class of multivalued maps are obtained, which generalize and extend classical fixed point theorems of Nadler and Reich and some recent Suzuki type fixed point theorems. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Fixed point | es_ES |
dc.subject | Banach contraction theorem | es_ES |
dc.subject | Hausdorff metric space | es_ES |
dc.title | New common fixed point theorems for multivalued maps | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2014-10-27T16:25:09Z | |
dc.identifier.doi | 10.4995/agt.2014.2815 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Kamal, R.; Chugh, R.; Singh, SL.; Mishra, SN. (2014). New common fixed point theorems for multivalued maps. Applied General Topology. 15(2):111-119. https://doi.org/10.4995/agt.2014.2815 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2014.2815 | es_ES |
dc.description.upvformatpinicio | 111 | es_ES |
dc.description.upvformatpfin | 119 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | Assad, N., & Kirk, W. (1972). Fixed point theorems for set-valued mappings of contractive type. Pacific Journal of Mathematics, 43(3), 553-562. doi:10.2140/pjm.1972.43.553 | es_ES |
dc.description.references | Lj. B. Ciric, Fixed points for generalized multivalued contractions, Mat. Vesnik 9, no. 24 (1972), 265-272. | es_ES |
dc.description.references | Ciric, L. B. (1974). A Generalization of Banach’s Contraction Principle. Proceedings of the American Mathematical Society, 45(2), 267. doi:10.2307/2040075 | es_ES |
dc.description.references | Damjanovic, B., & Djoric, D. (2011). Multivalued generalizations of the Kannan fixed point theorem. Filomat, 25(1), 125-131. doi:10.2298/fil1101125d | es_ES |
dc.description.references | Kikkawa, M., & Suzuki, T. (2008). Three fixed point theorems for generalized contractions with constants in complete metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 69(9), 2942-2949. doi:10.1016/j.na.2007.08.064 | es_ES |
dc.description.references | M. Kikkawa and T. Suzuki, Some notes on fixed point theorems with constants, Bull. Kyushu Inst. Technol. Pure Appl. Math. 56 (2009), 11-18. | es_ES |
dc.description.references | Moţ, G., & Petruşel, A. (2009). Fixed point theory for a new type of contractive multivalued operators. Nonlinear Analysis: Theory, Methods & Applications, 70(9), 3371-3377. doi:10.1016/j.na.2008.05.005 | es_ES |
dc.description.references | Nadler, S. (1969). Multi-valued contraction mappings. Pacific Journal of Mathematics, 30(2), 475-488. doi:10.2140/pjm.1969.30.475 | es_ES |
dc.description.references | S. B. Nadler, Hyperspaces of Sets, Marcel Dekker, New York, 1978. | es_ES |
dc.description.references | Popescu, O. (2009). Two fixed point theorems for generalized contractions with constants in complete metric space. Central European Journal of Mathematics, 7(3), 529-538. doi:10.2478/s11533-009-0019-2 | es_ES |
dc.description.references | S. Reich, Fixed points of multi-valued functions. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 51, no. 8 (1971), 32-35. | es_ES |
dc.description.references | Rhoades, B. E. (1977). A comparison of various definitions of contractive mappings. Transactions of the American Mathematical Society, 226, 257-257. doi:10.1090/s0002-9947-1977-0433430-4 | es_ES |
dc.description.references | I. A. Rus, Fixed point theorems for multivalued mappings in complete metric spaces, Math. Japon. 20 (1975), 21-24. | es_ES |
dc.description.references | I. A. Rus, Generalized Contractions And Applications, Cluj-Napoca, 2001. | es_ES |
dc.description.references | K. P. R. Sastry and S. V. R. Naidu, Fixed point theorems for generalized contraction mappings, Yokohama Math. J. 25 (1980), 15-29. | es_ES |
dc.description.references | Singh, S. L., & Mishra, S. N. (2011). Fixed point theorems for single-valued and multi-valued maps. Nonlinear Analysis: Theory, Methods & Applications, 74(6), 2243-2248. doi:10.1016/j.na.2010.11.029 | es_ES |
dc.description.references | Suzuki, T. (2007). A generalized Banach contraction principle that characterizes metric completeness. Proceedings of the American Mathematical Society, 136(05), 1861-1870. doi:10.1090/s0002-9939-07-09055-7 | es_ES |
dc.description.references | Suzuki, T. (2009). A new type of fixed point theorem in metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 71(11), 5313-5317. doi:10.1016/j.na.2009.04.017 | es_ES |