- -

Asymptotic structures of cardinals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Asymptotic structures of cardinals

Mostrar el registro completo del ítem

Petrenko, O.; Protasov, IV.; Slobodianiuk, S. (2014). Asymptotic structures of cardinals. Applied General Topology. 15(2):137-146. https://doi.org/10.4995/agt.2014.3109

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43613

Ficheros en el ítem

Metadatos del ítem

Título: Asymptotic structures of cardinals
Autor: Petrenko, Oleksandr Protasov, Igor V. Slobodianiuk, Sergii
Fecha difusión:
Resumen:
[EN] A ballean is a set X endowed with some family F of its subsets, called the balls, in such a way that (X,F)  can be considered as an asymptotic counterpart of a uniform topological space. Given a cardinal k, we define ...[+]
Palabras clave: Cardinal balleans , Coarse equivalence , Metrizability , Cellularity , Cardinal invariants , Ultrafilter
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2014.3109
Editorial:
Editorial Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2014.3109
Tipo: Artículo

References

Filali, M., & Protasov, I. V. (2008). Spread of balleans. Applied General Topology, 9(2), 169-175. doi:10.4995/agt.2008.1796

K. P. Hart and J. Van Mill, Open problems in $betaomega$, in Open Problems in Topology, J.vanMill, G.M.Reed (Editors), Elsevier Science Publishers, North Holland, 1990, 98-125.

Hindman, N., & Strauss, D. (1998). Algebra in the Stone-Čech Compactification. doi:10.1515/9783110809220 [+]
Filali, M., & Protasov, I. V. (2008). Spread of balleans. Applied General Topology, 9(2), 169-175. doi:10.4995/agt.2008.1796

K. P. Hart and J. Van Mill, Open problems in $betaomega$, in Open Problems in Topology, J.vanMill, G.M.Reed (Editors), Elsevier Science Publishers, North Holland, 1990, 98-125.

Hindman, N., & Strauss, D. (1998). Algebra in the Stone-Čech Compactification. doi:10.1515/9783110809220

J. Ketonen, On the existence of $P$-points in the Stone-Cech compactification of integers, Fundam. Math. 62 (1976), 91-94.

K. Kunen, Set Theory: An Introduction to Independence Proofs, North-Holland, 1980.

Mathias, A. R. D. (1978). O# and the p-point problem. Higher Set Theory, 375-384. doi:10.1007/bfb0103109

Petrenko, O., & Protasov, I. V. (2012). Thin Ultrafilters. Notre Dame Journal of Formal Logic, 53(1), 79-88. doi:10.1215/00294527-1626536

Petrenko, O. V., & Protasov, I. V. (2012). Balleans and G-spaces. Ukrainian Mathematical Journal, 64(3), 387-393. doi:10.1007/s11253-012-0653-x

Protasov, I. V. (2004). Resolvability of ball structures. Applied General Topology, 5(2), 191. doi:10.4995/agt.2004.1969

Protasov, I. V. (2007). Cellularity and density of balleans. Applied General Topology, 8(2), 283-291. doi:10.4995/agt.2007.1898

Protasov, I. V. (2013). The combinatorial derivation. Applied General Topology, 14(2). doi:10.4995/agt.2013.1587

I. V.Protasov,Extraresolvability of balleans, Comment. Math. Univ. Carolinae 48 (2007), 161-175.

I. V. Protasov and M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., Vol. 12, VNTL Publishers, Lviv, 2007.

J. Roe, Lectures on Coarse Geometry, Amer. Math. Soc., Providence, R.I, 2003.

Rudin, W. (1956). Homogeneity problems in the theory of ?ech compactifications. Duke Mathematical Journal, 23(3), 409-419. doi:10.1215/s0012-7094-56-02337-7

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem