- -

Subgroups of paratopological groups and feebly compact groups

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Subgroups of paratopological groups and feebly compact groups

Show full item record

Fernández, M.; Tkachenko, MG. (2014). Subgroups of paratopological groups and feebly compact groups. Applied General Topology. 15(2):235-248. doi:http://dx.doi.org/10.4995/agt.2014.3157.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43631

Files in this item

Item Metadata

Title: Subgroups of paratopological groups and feebly compact groups
Author: Fernández, Manuel Tkachenko, Mikhail G.
Issued date:
Abstract:
[EN] It is shown that if all countable subgroups of a semitopological group G are precompact, then G is also precompact and that the closure of an arbitrary subgroup of G is again a subgroup. We present a general method ...[+]
Subjects: Feebly compact , Precompact , Paratopological group , Subsemigroup , Topologically periodic
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2014.3157
Publisher:
Editorial Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2014.3157
Project ID:
CONACyT/CB-2012-01 178103
Thanks:
This author was supported by CONACyT of Mexico, grant CB-2012-01 178103.
Type: Artículo

References

Arhangel’skii, A. V., & Reznichenko, E. A. (2005). Paratopological and semitopological groups versus topological groups. Topology and its Applications, 151(1-3), 107-119. doi:10.1016/j.topol.2003.08.035

Arhangel’skii, A., & Tkachenko, M. (2008). Topological Groups and Related Structures. Atlantis Studies in Mathematics. doi:10.2991/978-94-91216-35-0

Blair, R. L. (1976). Spaces in Which Special Sets are z-Embedded. Canadian Journal of Mathematics, 28(4), 673-690. doi:10.4153/cjm-1976-068-9 [+]
Arhangel’skii, A. V., & Reznichenko, E. A. (2005). Paratopological and semitopological groups versus topological groups. Topology and its Applications, 151(1-3), 107-119. doi:10.1016/j.topol.2003.08.035

Arhangel’skii, A., & Tkachenko, M. (2008). Topological Groups and Related Structures. Atlantis Studies in Mathematics. doi:10.2991/978-94-91216-35-0

Blair, R. L. (1976). Spaces in Which Special Sets are z-Embedded. Canadian Journal of Mathematics, 28(4), 673-690. doi:10.4153/cjm-1976-068-9

T. Banakh and O. Ravsky, On subgroups of saturated or totally bounded paratopological groups, Algebra Discrete Math. 2003, no.4 (2003), 1-20.

T. Banakh and O. Ravsky, Oscillator topologies on a paratopological group and related number invariants, Algebraic Structures and their Applications, Kyiv: Inst. Mat. NANU (2002), 140-152.

M.Fernández, On some classes of paratopological groups, Topology Proc. 40 (2012), 63-72.

O. Ravsky, Paratopological groups, II, Matematychni Studii, 17 (2002) 93-101.

Reznichenko, E. A. (1994). Extension of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups. Topology and its Applications, 59(3), 233-244. doi:10.1016/0166-8641(94)90021-3

S. Romaguera, M. Sanchis and M. Tkachenko, Free paratopological groups, Topology Proc. 27, no. 2 (2003), 613-640.

Tkachenko, M. (2013). Paratopological and Semitopological Groups Versus Topological Groups. Recent Progress in General Topology III, 825-882. doi:10.2991/978-94-6239-024-9_20

Xie, L.-H., Lin, S., & Tkachenko, M. (2013). Factorization properties of paratopological groups. Topology and its Applications, 160(14), 1902-1917. doi:10.1016/j.topol.2013.08.001

[-]

This item appears in the following Collection(s)

Show full item record