- -

Subgroups of paratopological groups and feebly compact groups

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Subgroups of paratopological groups and feebly compact groups

Show simple item record

Files in this item

dc.contributor.author Fernández, Manuel es_ES
dc.contributor.author Tkachenko, Mikhail G. es_ES
dc.date.accessioned 2014-10-28T07:51:02Z
dc.date.available 2014-10-28T07:51:02Z
dc.date.issued 2014-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/43631
dc.description.abstract [EN] It is shown that if all countable subgroups of a semitopological group G are precompact, then G is also precompact and that the closure of an arbitrary subgroup of G is again a subgroup. We present a general method of refining the topology of a given commutative paratopological group G such that the group G with the finer topology, say, σ is again a paratopological group containing a subgroup whose closure in (G, σ) is not a subgroup. It is also proved that a feebly compact paratopological group H is perfectly k-normal and that every Gδ-dense subspace of H is feebly compact. es_ES
dc.description.sponsorship This author was supported by CONACyT of Mexico, grant CB-2012-01 178103.
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Feebly compact es_ES
dc.subject Precompact es_ES
dc.subject Paratopological group es_ES
dc.subject Subsemigroup es_ES
dc.subject Topologically periodic es_ES
dc.title Subgroups of paratopological groups and feebly compact groups es_ES
dc.type Artículo es_ES
dc.date.updated 2014-10-28T07:42:03Z
dc.identifier.doi 10.4995/agt.2014.3157
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//CB-2012-01-178103/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Fernández, M.; Tkachenko, MG. (2014). Subgroups of paratopological groups and feebly compact groups. Applied General Topology. 15(2):235-248. https://doi.org/10.4995/agt.2014.3157 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2014.3157 es_ES
dc.description.upvformatpinicio 235 es_ES
dc.description.upvformatpfin 248 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México
dc.description.references Arhangel’skii, A. V., & Reznichenko, E. A. (2005). Paratopological and semitopological groups versus topological groups. Topology and its Applications, 151(1-3), 107-119. doi:10.1016/j.topol.2003.08.035 es_ES
dc.description.references Arhangel’skii, A., & Tkachenko, M. (2008). Topological Groups and Related Structures. Atlantis Studies in Mathematics. doi:10.2991/978-94-91216-35-0 es_ES
dc.description.references Blair, R. L. (1976). Spaces in Which Special Sets are z-Embedded. Canadian Journal of Mathematics, 28(4), 673-690. doi:10.4153/cjm-1976-068-9 es_ES
dc.description.references T. Banakh and O. Ravsky, On subgroups of saturated or totally bounded paratopological groups, Algebra Discrete Math. 2003, no.4 (2003), 1-20. es_ES
dc.description.references T. Banakh and O. Ravsky, Oscillator topologies on a paratopological group and related number invariants, Algebraic Structures and their Applications, Kyiv: Inst. Mat. NANU (2002), 140-152. es_ES
dc.description.references M.Fernández, On some classes of paratopological groups, Topology Proc. 40 (2012), 63-72. es_ES
dc.description.references O. Ravsky, Paratopological groups, II, Matematychni Studii, 17 (2002) 93-101. es_ES
dc.description.references Reznichenko, E. A. (1994). Extension of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups. Topology and its Applications, 59(3), 233-244. doi:10.1016/0166-8641(94)90021-3 es_ES
dc.description.references S. Romaguera, M. Sanchis and M. Tkachenko, Free paratopological groups, Topology Proc. 27, no. 2 (2003), 613-640. es_ES
dc.description.references Tkachenko, M. (2013). Paratopological and Semitopological Groups Versus Topological Groups. Recent Progress in General Topology III, 825-882. doi:10.2991/978-94-6239-024-9_20 es_ES
dc.description.references Xie, L.-H., Lin, S., & Tkachenko, M. (2013). Factorization properties of paratopological groups. Topology and its Applications, 160(14), 1902-1917. doi:10.1016/j.topol.2013.08.001 es_ES


This item appears in the following Collection(s)

Show simple item record