dc.contributor.author |
Fernández, Manuel
|
es_ES |
dc.contributor.author |
Tkachenko, Mikhail G.
|
es_ES |
dc.date.accessioned |
2014-10-28T07:51:02Z |
|
dc.date.available |
2014-10-28T07:51:02Z |
|
dc.date.issued |
2014-10-01 |
|
dc.identifier.issn |
1576-9402 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/43631 |
|
dc.description.abstract |
[EN] It is shown that if all countable subgroups of a semitopological group G are precompact, then G is also precompact and that the closure of an arbitrary subgroup of G is again a subgroup. We present a general method of refining the topology of a given commutative paratopological group G such that the group G with the finer topology, say, σ is again a paratopological group containing a subgroup whose closure in (G, σ) is not a subgroup.
It is also proved that a feebly compact paratopological group H is perfectly k-normal and that every Gδ-dense subspace of H is feebly compact. |
es_ES |
dc.description.sponsorship |
This author was supported by CONACyT of Mexico, grant CB-2012-01 178103. |
|
dc.language |
Inglés |
es_ES |
dc.publisher |
Editorial Universitat Politècnica de València |
|
dc.relation.ispartof |
Applied General Topology |
|
dc.rights |
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) |
es_ES |
dc.subject |
Feebly compact |
es_ES |
dc.subject |
Precompact |
es_ES |
dc.subject |
Paratopological group |
es_ES |
dc.subject |
Subsemigroup |
es_ES |
dc.subject |
Topologically periodic |
es_ES |
dc.title |
Subgroups of paratopological groups and feebly compact groups |
es_ES |
dc.type |
Artículo |
es_ES |
dc.date.updated |
2014-10-28T07:42:03Z |
|
dc.identifier.doi |
10.4995/agt.2014.3157 |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/CONACyT//CB-2012-01-178103/ |
|
dc.rights.accessRights |
Abierto |
es_ES |
dc.description.bibliographicCitation |
Fernández, M.; Tkachenko, MG. (2014). Subgroups of paratopological groups and feebly compact groups. Applied General Topology. 15(2):235-248. https://doi.org/10.4995/agt.2014.3157 |
es_ES |
dc.description.accrualMethod |
SWORD |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.4995/agt.2014.3157 |
es_ES |
dc.description.upvformatpinicio |
235 |
es_ES |
dc.description.upvformatpfin |
248 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
15 |
|
dc.description.issue |
2 |
|
dc.identifier.eissn |
1989-4147 |
|
dc.contributor.funder |
Consejo Nacional de Ciencia y Tecnología, México |
|
dc.description.references |
Arhangel’skii, A. V., & Reznichenko, E. A. (2005). Paratopological and semitopological groups versus topological groups. Topology and its Applications, 151(1-3), 107-119. doi:10.1016/j.topol.2003.08.035 |
es_ES |
dc.description.references |
Arhangel’skii, A., & Tkachenko, M. (2008). Topological Groups and Related Structures. Atlantis Studies in Mathematics. doi:10.2991/978-94-91216-35-0 |
es_ES |
dc.description.references |
Blair, R. L. (1976). Spaces in Which Special Sets are z-Embedded. Canadian Journal of Mathematics, 28(4), 673-690. doi:10.4153/cjm-1976-068-9 |
es_ES |
dc.description.references |
T. Banakh and O. Ravsky, On subgroups of saturated or totally bounded paratopological groups, Algebra Discrete Math. 2003, no.4 (2003), 1-20. |
es_ES |
dc.description.references |
T. Banakh and O. Ravsky, Oscillator topologies on a paratopological group and related number invariants, Algebraic Structures and their Applications, Kyiv: Inst. Mat. NANU (2002), 140-152. |
es_ES |
dc.description.references |
M.Fernández, On some classes of paratopological groups, Topology Proc. 40 (2012), 63-72. |
es_ES |
dc.description.references |
O. Ravsky, Paratopological groups, II, Matematychni Studii, 17 (2002) 93-101. |
es_ES |
dc.description.references |
Reznichenko, E. A. (1994). Extension of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups. Topology and its Applications, 59(3), 233-244. doi:10.1016/0166-8641(94)90021-3 |
es_ES |
dc.description.references |
S. Romaguera, M. Sanchis and M. Tkachenko, Free paratopological groups, Topology Proc. 27, no. 2 (2003), 613-640. |
es_ES |
dc.description.references |
Tkachenko, M. (2013). Paratopological and Semitopological Groups Versus Topological Groups. Recent Progress in General Topology III, 825-882. doi:10.2991/978-94-6239-024-9_20 |
es_ES |
dc.description.references |
Xie, L.-H., Lin, S., & Tkachenko, M. (2013). Factorization properties of paratopological groups. Topology and its Applications, 160(14), 1902-1917. doi:10.1016/j.topol.2013.08.001 |
es_ES |