Mostrar el registro sencillo del ítem
dc.contributor.author | Fernández, Manuel | es_ES |
dc.contributor.author | Tkachenko, Mikhail G. | es_ES |
dc.date.accessioned | 2014-10-28T07:51:02Z | |
dc.date.available | 2014-10-28T07:51:02Z | |
dc.date.issued | 2014-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/43631 | |
dc.description.abstract | [EN] It is shown that if all countable subgroups of a semitopological group G are precompact, then G is also precompact and that the closure of an arbitrary subgroup of G is again a subgroup. We present a general method of refining the topology of a given commutative paratopological group G such that the group G with the finer topology, say, σ is again a paratopological group containing a subgroup whose closure in (G, σ) is not a subgroup. It is also proved that a feebly compact paratopological group H is perfectly k-normal and that every Gδ-dense subspace of H is feebly compact. | es_ES |
dc.description.sponsorship | This author was supported by CONACyT of Mexico, grant CB-2012-01 178103. | |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Feebly compact | es_ES |
dc.subject | Precompact | es_ES |
dc.subject | Paratopological group | es_ES |
dc.subject | Subsemigroup | es_ES |
dc.subject | Topologically periodic | es_ES |
dc.title | Subgroups of paratopological groups and feebly compact groups | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2014-10-28T07:42:03Z | |
dc.identifier.doi | 10.4995/agt.2014.3157 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//CB-2012-01-178103/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Fernández, M.; Tkachenko, MG. (2014). Subgroups of paratopological groups and feebly compact groups. Applied General Topology. 15(2):235-248. https://doi.org/10.4995/agt.2014.3157 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2014.3157 | es_ES |
dc.description.upvformatpinicio | 235 | es_ES |
dc.description.upvformatpfin | 248 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 | |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | |
dc.description.references | Arhangel’skii, A. V., & Reznichenko, E. A. (2005). Paratopological and semitopological groups versus topological groups. Topology and its Applications, 151(1-3), 107-119. doi:10.1016/j.topol.2003.08.035 | es_ES |
dc.description.references | Arhangel’skii, A., & Tkachenko, M. (2008). Topological Groups and Related Structures. Atlantis Studies in Mathematics. doi:10.2991/978-94-91216-35-0 | es_ES |
dc.description.references | Blair, R. L. (1976). Spaces in Which Special Sets are z-Embedded. Canadian Journal of Mathematics, 28(4), 673-690. doi:10.4153/cjm-1976-068-9 | es_ES |
dc.description.references | T. Banakh and O. Ravsky, On subgroups of saturated or totally bounded paratopological groups, Algebra Discrete Math. 2003, no.4 (2003), 1-20. | es_ES |
dc.description.references | T. Banakh and O. Ravsky, Oscillator topologies on a paratopological group and related number invariants, Algebraic Structures and their Applications, Kyiv: Inst. Mat. NANU (2002), 140-152. | es_ES |
dc.description.references | M.Fernández, On some classes of paratopological groups, Topology Proc. 40 (2012), 63-72. | es_ES |
dc.description.references | O. Ravsky, Paratopological groups, II, Matematychni Studii, 17 (2002) 93-101. | es_ES |
dc.description.references | Reznichenko, E. A. (1994). Extension of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups. Topology and its Applications, 59(3), 233-244. doi:10.1016/0166-8641(94)90021-3 | es_ES |
dc.description.references | S. Romaguera, M. Sanchis and M. Tkachenko, Free paratopological groups, Topology Proc. 27, no. 2 (2003), 613-640. | es_ES |
dc.description.references | Tkachenko, M. (2013). Paratopological and Semitopological Groups Versus Topological Groups. Recent Progress in General Topology III, 825-882. doi:10.2991/978-94-6239-024-9_20 | es_ES |
dc.description.references | Xie, L.-H., Lin, S., & Tkachenko, M. (2013). Factorization properties of paratopological groups. Topology and its Applications, 160(14), 1902-1917. doi:10.1016/j.topol.2013.08.001 | es_ES |