- -

SIVEH: numerical computing simulation of wireless energy-harvesting sensor nodes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

SIVEH: numerical computing simulation of wireless energy-harvesting sensor nodes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez Matías, Antonio María es_ES
dc.contributor.author Blanc Clavero, Sara es_ES
dc.contributor.author Climent, Salvador es_ES
dc.contributor.author Yuste Pérez, Pedro es_ES
dc.contributor.author Ors Carot, Rafael es_ES
dc.date.accessioned 2014-10-30T16:47:58Z
dc.date.available 2014-10-30T16:47:58Z
dc.date.issued 2013-09
dc.identifier.issn 1424-8220
dc.identifier.uri http://hdl.handle.net/10251/43742
dc.description.abstract [EN] The paper presents a numerical energy harvesting model for sensor nodes, SIVEH (Simulator I–V for EH), based on I–V hardware tracking. I–V tracking is demonstrated to be more accurate than traditional energy modeling techniques when some of the components present different power dissipation at either different operating voltages or drawn currents. SIVEH numerical computing allows fast simulation of long periods of time—days, weeks, months or years—using real solar radiation curves. Moreover, SIVEH modeling has been enhanced with sleep time rate dynamic adjustment, while seeking energy-neutral operation. This paper presents the model description, a functional verification and a critical comparison with the classic energy approach es_ES
dc.description.sponsorship The authors gratefully acknowledge financial support from CICYT. ANDREA: Automated Inspection and Remote Performance of Marine Fish Farms (CTM2011-29691-C02-01); and RIDeWAM: Research on Improvement of the Dependability of WSN-based Applications by Developing a Hybrid Monitoring Platform. (TIN2011-28435-C03-01). en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Energy and resource management es_ES
dc.subject Low-power hardware design es_ES
dc.subject Numerical computing es_ES
dc.subject Wireless sensor networks es_ES
dc.subject Energy harvesting es_ES
dc.subject Energy neutral operation es_ES
dc.subject Simulation model es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title SIVEH: numerical computing simulation of wireless energy-harvesting sensor nodes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s130911750
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTM2011-29691-C02-01/ES/SENSORIZACION AMBIENTAL SUBACUATICA PARA LA INSPECCION Y MONITORIZACION DE EXPLOTACIONES DE ACUICULTURA MARINA/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2011-28435-C03-01/ES/INVESTIGACION EN LA MEJORA DE LA CONFIABILIDAD DE APLICACIONES BASADAS EN WSN MEDIANTE EL DESARROLLO DE UNA PLATAFORMA HIBRIDA DE MONITORIZACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Sánchez Matías, AM.; Blanc Clavero, S.; Climent, S.; Yuste Pérez, P.; Ors Carot, R. (2013). SIVEH: numerical computing simulation of wireless energy-harvesting sensor nodes. Sensors. 13(9):11750-11771. https://doi.org/10.3390/s130911750 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/s130911750 es_ES
dc.description.upvformatpinicio 11750 es_ES
dc.description.upvformatpfin 11771 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 248882
dc.identifier.pmid 24008287 en_EN
dc.identifier.pmcid PMC3821352 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Akyildiz, I., Melodia, T., & Chowdury, K. (2007). Wireless multimedia sensor networks: A survey. IEEE Wireless Communications, 14(6), 32-39. doi:10.1109/mwc.2007.4407225 es_ES
dc.description.references Madan, R., Cui, S., Lall, S., & Goldsmith, A. (2006). Cross-Layer Design for Lifetime Maximization in Interference-Limited Wireless Sensor Networks. IEEE Transactions on Wireless Communications, 5(11), 3142-3152. doi:10.1109/twc.2006.04770 es_ES
dc.description.references Wang, Z. L., & Wu, W. (2012). Nanotechnology-Enabled Energy Harvesting for Self-Powered Micro-/Nanosystems. Angewandte Chemie International Edition, 51(47), 11700-11721. doi:10.1002/anie.201201656 es_ES
dc.description.references Riemer, R., & Shapiro, A. (2011). Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. Journal of NeuroEngineering and Rehabilitation, 8(1), 22. doi:10.1186/1743-0003-8-22 es_ES
dc.description.references Sudevalayam, S., & Kulkarni, P. (2011). Energy Harvesting Sensor Nodes: Survey and Implications. IEEE Communications Surveys & Tutorials, 13(3), 443-461. doi:10.1109/surv.2011.060710.00094 es_ES
dc.description.references Alippi, C., & Galperti, C. (2008). An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(6), 1742-1750. doi:10.1109/tcsi.2008.922023 es_ES
dc.description.references Alippi, C., Camplani, R., Galperti, C., & Roveri, M. (2011). A Robust, Adaptive, Solar-Powered WSN Framework for Aquatic Environmental Monitoring. IEEE Sensors Journal, 11(1), 45-55. doi:10.1109/jsen.2010.2051539 es_ES
dc.description.references Lopez-Lapena, O., Penella, M. T., & Gasulla, M. (2010). A New MPPT Method for Low-Power Solar Energy Harvesting. IEEE Transactions on Industrial Electronics, 57(9), 3129-3138. doi:10.1109/tie.2009.2037653 es_ES
dc.description.references Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M. B. (2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems, 6(4), 32-es. doi:10.1145/1274858.1274870 es_ES
dc.description.references Niyato, D., Hossain, E., Rashid, M., & Bhargava, V. (2007). Wireless sensor networks with energy harvesting technologies: a game-theoretic approach to optimal energy management. IEEE Wireless Communications, 14(4), 90-96. doi:10.1109/mwc.2007.4300988 es_ES
dc.description.references EECS Department of the University of California at Berkleyhttp://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/ es_ES
dc.description.references http://www.panasonic.com/industrial/components/pdf/goldcap_tech-guide_052505.pdf es_ES
dc.description.references Analog, Embedded Processing, Semiconductor Company, Texas Instrumentshttp://www.ti.com es_ES
dc.description.references ST Microelectronicshttp://www.st.com es_ES
dc.description.references Home Pagehttp://www.linear.com/ es_ES
dc.description.references ns-3http://www.nsnam.org es_ES
dc.description.references Sánchez, A., Blanc, S., Yuste, P., Perles, A., & Serrano, J. J. (2012). An Ultra-Low Power and Flexible Acoustic Modem Design to Develop Energy-Efficient Underwater Sensor Networks. Sensors, 12(6), 6837-6856. doi:10.3390/s120606837 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem