- -

SIVEH: numerical computing simulation of wireless energy-harvesting sensor nodes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

SIVEH: numerical computing simulation of wireless energy-harvesting sensor nodes

Mostrar el registro completo del ítem

Sánchez Matías, AM.; Blanc Clavero, S.; Climent, S.; Yuste Pérez, P.; Ors Carot, R. (2013). SIVEH: numerical computing simulation of wireless energy-harvesting sensor nodes. Sensors. 13(9):11750-11771. https://doi.org/10.3390/s130911750

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43742

Ficheros en el ítem

Metadatos del ítem

Título: SIVEH: numerical computing simulation of wireless energy-harvesting sensor nodes
Autor: Sánchez Matías, Antonio María Blanc Clavero, Sara Climent, Salvador Yuste Pérez, Pedro Ors Carot, Rafael
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] The paper presents a numerical energy harvesting model for sensor nodes, SIVEH (Simulator I–V for EH), based on I–V hardware tracking. I–V tracking is demonstrated to be more accurate than traditional energy modeling ...[+]
Palabras clave: Energy and resource management , Low-power hardware design , Numerical computing , Wireless sensor networks , Energy harvesting , Energy neutral operation , Simulation model
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (issn: 1424-8220 )
DOI: 10.3390/s130911750
Editorial:
MDPI
Versión del editor: http://dx.doi.org/10.3390/s130911750
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTM2011-29691-C02-01/ES/SENSORIZACION AMBIENTAL SUBACUATICA PARA LA INSPECCION Y MONITORIZACION DE EXPLOTACIONES DE ACUICULTURA MARINA/ /
info:eu-repo/grantAgreement/MICINN//TIN2011-28435-C03-01/ES/INVESTIGACION EN LA MEJORA DE LA CONFIABILIDAD DE APLICACIONES BASADAS EN WSN MEDIANTE EL DESARROLLO DE UNA PLATAFORMA HIBRIDA DE MONITORIZACION/
Agradecimientos:
The authors gratefully acknowledge financial support from CICYT. ANDREA: Automated Inspection and Remote Performance of Marine Fish Farms (CTM2011-29691-C02-01); and RIDeWAM: Research on Improvement of the Dependability ...[+]
Tipo: Artículo

References

Akyildiz, I., Melodia, T., & Chowdury, K. (2007). Wireless multimedia sensor networks: A survey. IEEE Wireless Communications, 14(6), 32-39. doi:10.1109/mwc.2007.4407225

Madan, R., Cui, S., Lall, S., & Goldsmith, A. (2006). Cross-Layer Design for Lifetime Maximization in Interference-Limited Wireless Sensor Networks. IEEE Transactions on Wireless Communications, 5(11), 3142-3152. doi:10.1109/twc.2006.04770

Wang, Z. L., & Wu, W. (2012). Nanotechnology-Enabled Energy Harvesting for Self-Powered Micro-/Nanosystems. Angewandte Chemie International Edition, 51(47), 11700-11721. doi:10.1002/anie.201201656 [+]
Akyildiz, I., Melodia, T., & Chowdury, K. (2007). Wireless multimedia sensor networks: A survey. IEEE Wireless Communications, 14(6), 32-39. doi:10.1109/mwc.2007.4407225

Madan, R., Cui, S., Lall, S., & Goldsmith, A. (2006). Cross-Layer Design for Lifetime Maximization in Interference-Limited Wireless Sensor Networks. IEEE Transactions on Wireless Communications, 5(11), 3142-3152. doi:10.1109/twc.2006.04770

Wang, Z. L., & Wu, W. (2012). Nanotechnology-Enabled Energy Harvesting for Self-Powered Micro-/Nanosystems. Angewandte Chemie International Edition, 51(47), 11700-11721. doi:10.1002/anie.201201656

Riemer, R., & Shapiro, A. (2011). Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. Journal of NeuroEngineering and Rehabilitation, 8(1), 22. doi:10.1186/1743-0003-8-22

Sudevalayam, S., & Kulkarni, P. (2011). Energy Harvesting Sensor Nodes: Survey and Implications. IEEE Communications Surveys & Tutorials, 13(3), 443-461. doi:10.1109/surv.2011.060710.00094

Alippi, C., & Galperti, C. (2008). An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(6), 1742-1750. doi:10.1109/tcsi.2008.922023

Alippi, C., Camplani, R., Galperti, C., & Roveri, M. (2011). A Robust, Adaptive, Solar-Powered WSN Framework for Aquatic Environmental Monitoring. IEEE Sensors Journal, 11(1), 45-55. doi:10.1109/jsen.2010.2051539

Lopez-Lapena, O., Penella, M. T., & Gasulla, M. (2010). A New MPPT Method for Low-Power Solar Energy Harvesting. IEEE Transactions on Industrial Electronics, 57(9), 3129-3138. doi:10.1109/tie.2009.2037653

Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M. B. (2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems, 6(4), 32-es. doi:10.1145/1274858.1274870

Niyato, D., Hossain, E., Rashid, M., & Bhargava, V. (2007). Wireless sensor networks with energy harvesting technologies: a game-theoretic approach to optimal energy management. IEEE Wireless Communications, 14(4), 90-96. doi:10.1109/mwc.2007.4300988

EECS Department of the University of California at Berkleyhttp://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/

http://www.panasonic.com/industrial/components/pdf/goldcap_tech-guide_052505.pdf

Analog, Embedded Processing, Semiconductor Company, Texas Instrumentshttp://www.ti.com

ST Microelectronicshttp://www.st.com

Home Pagehttp://www.linear.com/

ns-3http://www.nsnam.org

Sánchez, A., Blanc, S., Yuste, P., Perles, A., & Serrano, J. J. (2012). An Ultra-Low Power and Flexible Acoustic Modem Design to Develop Energy-Efficient Underwater Sensor Networks. Sensors, 12(6), 6837-6856. doi:10.3390/s120606837

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem