- -

Automatic supervision of gestures to guide novice surgeons during training

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic supervision of gestures to guide novice surgeons during training

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Monserrat, C es_ES
dc.contributor.author Lucas, A. es_ES
dc.contributor.author Hernández Orallo, José es_ES
dc.contributor.author Rupérez Moreno, María José es_ES
dc.date.accessioned 2014-11-06T12:13:17Z
dc.date.available 2014-11-06T12:13:17Z
dc.date.issued 2014-04
dc.identifier.issn 0930-2794
dc.identifier.uri http://hdl.handle.net/10251/43933
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s00464-013-3285-9 es_ES
dc.description.abstract Background Virtual surgery simulators enable surgeons to learn by themselves, shortening their learning curves. Virtual simulators offer an objective evaluation of the surgeon’s skills at the end of each training session. The considered evaluation parameters are based on the analysis of the surgeon’s gestures performed throughout the training session. Currently, this information is usually known by surgeons only at the end of the training session, but very limited during the training performance. In this paper, we present a novel method for automatic and interactive evaluation of the surgeon’s skills that is able to supervise inexperienced surgeons during their training session with surgical simulators. Methods The method is based on the assumption that the sequence of gestures carried out by an expert surgeon in the simulator can be translated into a sequence (a character string) that should be reproduced by a novice surgeon during a training session. In this work, a string-matching algorithm has been modified to calculate the alignment and distance between the sequences of both expert and novice during the training performance. Results The results have shown that it is possible to distinguish between different skill levels at all times during the surgical training session. Conclusions The main contribution of this paper is a method where the difference between an expert’s sequence of gestures and a novice’s ongoing sequence is used to guide inexperienced surgeons. This is possible by indicating to novices the gesture corrections to be applied during surgical training as continuous expert supervision would do. es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Surgical Endoscopy es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Imaging & VR es_ES
dc.subject Technical surgical es_ES
dc.subject Technical human/robotic es_ES
dc.subject Technical computing es_ES
dc.subject Technical training es_ES
dc.subject Endoscopy es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Automatic supervision of gestures to guide novice surgeons during training es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00464-013-3285-9
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.description.bibliographicCitation Monserrat, C.; Lucas, A.; Hernández Orallo, J.; Rupérez Moreno, MJ. (2014). Automatic supervision of gestures to guide novice surgeons during training. Surgical Endoscopy. 28(4):1360-1370. doi:10.1007/s00464-013-3285-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://link.springer.com/article/10.1007%2Fs00464-013-3285-9 es_ES
dc.description.upvformatpinicio 1360 es_ES
dc.description.upvformatpfin 1370 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 253484
dc.description.references Ericsson KA (ed) (2009) Development of professional expertise: toward measurement of expert performance and design of optimal learning environments. Cambridge University Press, New York es_ES
dc.description.references McGaghie WC (2008) Research opportunities in simulation-based medical education using deliberate practice. Acad Emerg Med 15:995–1001 es_ES
dc.description.references Ericsson KA (2008) Deliberate practice and acquisition of expert performance: a general overview. Acad Emerg Med 15:988–994 es_ES
dc.description.references Issenberg SB, McGaghie WC, Petrusa ER et al (2005) Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Med Teach 27:10–28 es_ES
dc.description.references Porte MC, Xeoulis G, Reznick RK, Dubrowski A (2007) Verbal feedback from an expert is more effective than self-accessed feedback about motion efficiency in learning new surgical skills. Am J Surg 193:105–110. doi: 10.1016/j.amjsurg.2006.03.016 es_ES
dc.description.references Hall PAV, Dowling GR (1980) Approximate string matching. ACM computing surveys (CSUR) 18(2):381–402. doi: 10.1145/356827.356830 es_ES
dc.description.references Stylopoulos N, Cotin S, Maithel SK et al (2004) Computer-enhanced laparoscopic training system (CELTS): bridging the gap. Surg Endosc 18(5):782–789. doi: 10.3233/978-1-60750-938-7-336 es_ES
dc.description.references Solis J, Oshima N, Ishii H, Matsuoka N et al (2009) Quantitative assessment of the surgical training methods with the suture/ligature training system WKS-2RII. In: IEEE international conference on robotics and automation, 2009 (ICRA ‘09), Kobe, pp 4219–4224. doi: 10.1109/ROBOT.2009.5152314 es_ES
dc.description.references Lin Z et al (2010) Objective evaluation of laparoscopic surgical skills using Waseda bioinstrumentation system WB-3. In: IEEE international conference on robotics and biomimetics (ROBIO), Tianjin, pp 247–252. doi: 10.1109/ROBIO.2010.5723335 es_ES
dc.description.references Chmarra MK, Klein S, Winter JCF, Jansen FW, Dankelman J (2010) Objective classification of residents based on their psychomotor laparoscopic skills. Surg Endosc 24(5):1031–1039. doi: 10.1007/s00464-009-0721-y es_ES
dc.description.references Lin HC, Shafran I, Yuh D, Hager GD (2006) Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Comput Aided Surg 11(5):220–230. doi: 10.3109/10929080600989189 es_ES
dc.description.references Rosen J, Brown JD, Chang L, Sinanan MN, Hannaford B (2006) Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete Markov model. IEEE Trans Biomed Eng 53(3):399–413. doi: 10.1109/TBME.2005.869771 es_ES
dc.description.references Lahanas V, Loukas C, Nikiteas N, Dimitroulis D, Georgiou E (2011) Psychomotor skills assessment in laparoscopic surgery using augmented reality scenarios. In: 17th international conference on digital signal processing (DSP), Corfu. doi: 10.1109/ICDSP.2011.6004893 es_ES
dc.description.references Leong JJ et al (2006) HMM assessment of quality of movement trajectory in laparoscopic surgery. In: International conference on medical image computing and computer-assisted intervention (MICCAI’06), pp 752–759. doi: 10.3109/10929080701730979 es_ES
dc.description.references Megali G, Sinigaglia S, Tonet O, Dario P (2006) Modelling and evaluation of surgical performance using Hidden Markov models. IEEE Trans Biomed Eng 53(10):1911–1919. doi: 10.1109/TBME.2006.881784 es_ES
dc.description.references Huang J, Payandeh S, Doris P, Hajshirmohammadi I (2005) Fuzzy classification: towards evaluating performance on a surgical simulator. Stud Health Technol Inform 111:194–200 es_ES
dc.description.references Hajshirmohammadi I, Payandeh S (2007) Fuzzy set theory for performance evaluation in a surgical simulator. Presence 16(6):603–622. doi: 10.1162/pres.16.6.603 es_ES
dc.description.references Ukkonen E (1985) Algorithms for approximate string matching. Inf Control 64(1–3):100–118. doi: 10.1016/S0019-9958(85)80046-2 es_ES
dc.description.references Navarro G (2001) A guided tour to approximate string matching. ACM Comput Surv 33(1):31–88. doi: 10.1145/375360.375365 es_ES
dc.description.references Damerau FJ (1964) A technique for computer detection and correction of spelling errors. Commun ACM 7(3):171–176. doi: 10.1145/363958.363994 es_ES
dc.description.references Bergroth L, Hakonen H, Raita T (2000) A survey of longest common subsequence algorithms. In: Proceedings of the seventh international symposium on string processing information retrieval (SPIRE’00), A Coruña, p 39. doi: 10.1109/SPIRE.2000.878178 es_ES
dc.description.references Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334. doi: 10.1109/34.888718 es_ES
dc.description.references Simbionix™, Lap Mentor™. simbionix.com. http://simbionix.com/simulators/lap-mentor/library-of-modules/basic-skills/ . Accessed 31 Jan 2013 es_ES
dc.description.references Wagner RA, Fischer MJ (1974) Algorithms for approximate string matching. J ACM 21(1):168–173. doi: 10.1016/S0019-9958(85)80046-2 es_ES
dc.description.references Hirschberg DS (1975) A linear space algorithm for computing maximal common subsequences. Commun ACM 18(6):341–343. doi: 10.1145/360825.360861 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem