- -

Automatic supervision of gestures to guide novice surgeons during training

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic supervision of gestures to guide novice surgeons during training

Mostrar el registro completo del ítem

Monserrat, C.; Lucas, A.; Hernández Orallo, J.; Rupérez Moreno, MJ. (2014). Automatic supervision of gestures to guide novice surgeons during training. Surgical Endoscopy. 28(4):1360-1370. doi:10.1007/s00464-013-3285-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43933

Ficheros en el ítem

Metadatos del ítem

Título: Automatic supervision of gestures to guide novice surgeons during training
Autor: Monserrat, C Lucas, A. Hernández Orallo, José Rupérez Moreno, María José
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Fecha difusión:
Resumen:
Background Virtual surgery simulators enable surgeons to learn by themselves, shortening their learning curves. Virtual simulators offer an objective evaluation of the surgeon’s skills at the end of each training session. ...[+]
Palabras clave: Imaging & VR , Technical surgical , Technical human/robotic , Technical computing , Technical training , Endoscopy
Derechos de uso: Reserva de todos los derechos
Fuente:
Surgical Endoscopy. (issn: 0930-2794 )
DOI: 10.1007/s00464-013-3285-9
Editorial:
Springer Verlag (Germany)
Versión del editor: http://link.springer.com/article/10.1007%2Fs00464-013-3285-9
Descripción: The final publication is available at Springer via http://dx.doi.org/10.1007/s00464-013-3285-9
Tipo: Artículo

References

Ericsson KA (ed) (2009) Development of professional expertise: toward measurement of expert performance and design of optimal learning environments. Cambridge University Press, New York

McGaghie WC (2008) Research opportunities in simulation-based medical education using deliberate practice. Acad Emerg Med 15:995–1001

Ericsson KA (2008) Deliberate practice and acquisition of expert performance: a general overview. Acad Emerg Med 15:988–994 [+]
Ericsson KA (ed) (2009) Development of professional expertise: toward measurement of expert performance and design of optimal learning environments. Cambridge University Press, New York

McGaghie WC (2008) Research opportunities in simulation-based medical education using deliberate practice. Acad Emerg Med 15:995–1001

Ericsson KA (2008) Deliberate practice and acquisition of expert performance: a general overview. Acad Emerg Med 15:988–994

Issenberg SB, McGaghie WC, Petrusa ER et al (2005) Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Med Teach 27:10–28

Porte MC, Xeoulis G, Reznick RK, Dubrowski A (2007) Verbal feedback from an expert is more effective than self-accessed feedback about motion efficiency in learning new surgical skills. Am J Surg 193:105–110. doi: 10.1016/j.amjsurg.2006.03.016

Hall PAV, Dowling GR (1980) Approximate string matching. ACM computing surveys (CSUR) 18(2):381–402. doi: 10.1145/356827.356830

Stylopoulos N, Cotin S, Maithel SK et al (2004) Computer-enhanced laparoscopic training system (CELTS): bridging the gap. Surg Endosc 18(5):782–789. doi: 10.3233/978-1-60750-938-7-336

Solis J, Oshima N, Ishii H, Matsuoka N et al (2009) Quantitative assessment of the surgical training methods with the suture/ligature training system WKS-2RII. In: IEEE international conference on robotics and automation, 2009 (ICRA ‘09), Kobe, pp 4219–4224. doi: 10.1109/ROBOT.2009.5152314

Lin Z et al (2010) Objective evaluation of laparoscopic surgical skills using Waseda bioinstrumentation system WB-3. In: IEEE international conference on robotics and biomimetics (ROBIO), Tianjin, pp 247–252. doi: 10.1109/ROBIO.2010.5723335

Chmarra MK, Klein S, Winter JCF, Jansen FW, Dankelman J (2010) Objective classification of residents based on their psychomotor laparoscopic skills. Surg Endosc 24(5):1031–1039. doi: 10.1007/s00464-009-0721-y

Lin HC, Shafran I, Yuh D, Hager GD (2006) Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Comput Aided Surg 11(5):220–230. doi: 10.3109/10929080600989189

Rosen J, Brown JD, Chang L, Sinanan MN, Hannaford B (2006) Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete Markov model. IEEE Trans Biomed Eng 53(3):399–413. doi: 10.1109/TBME.2005.869771

Lahanas V, Loukas C, Nikiteas N, Dimitroulis D, Georgiou E (2011) Psychomotor skills assessment in laparoscopic surgery using augmented reality scenarios. In: 17th international conference on digital signal processing (DSP), Corfu. doi: 10.1109/ICDSP.2011.6004893

Leong JJ et al (2006) HMM assessment of quality of movement trajectory in laparoscopic surgery. In: International conference on medical image computing and computer-assisted intervention (MICCAI’06), pp 752–759. doi: 10.3109/10929080701730979

Megali G, Sinigaglia S, Tonet O, Dario P (2006) Modelling and evaluation of surgical performance using Hidden Markov models. IEEE Trans Biomed Eng 53(10):1911–1919. doi: 10.1109/TBME.2006.881784

Huang J, Payandeh S, Doris P, Hajshirmohammadi I (2005) Fuzzy classification: towards evaluating performance on a surgical simulator. Stud Health Technol Inform 111:194–200

Hajshirmohammadi I, Payandeh S (2007) Fuzzy set theory for performance evaluation in a surgical simulator. Presence 16(6):603–622. doi: 10.1162/pres.16.6.603

Ukkonen E (1985) Algorithms for approximate string matching. Inf Control 64(1–3):100–118. doi: 10.1016/S0019-9958(85)80046-2

Navarro G (2001) A guided tour to approximate string matching. ACM Comput Surv 33(1):31–88. doi: 10.1145/375360.375365

Damerau FJ (1964) A technique for computer detection and correction of spelling errors. Commun ACM 7(3):171–176. doi: 10.1145/363958.363994

Bergroth L, Hakonen H, Raita T (2000) A survey of longest common subsequence algorithms. In: Proceedings of the seventh international symposium on string processing information retrieval (SPIRE’00), A Coruña, p 39. doi: 10.1109/SPIRE.2000.878178

Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334. doi: 10.1109/34.888718

Simbionix™, Lap Mentor™. simbionix.com. http://simbionix.com/simulators/lap-mentor/library-of-modules/basic-skills/ . Accessed 31 Jan 2013

Wagner RA, Fischer MJ (1974) Algorithms for approximate string matching. J ACM 21(1):168–173. doi: 10.1016/S0019-9958(85)80046-2

Hirschberg DS (1975) A linear space algorithm for computing maximal common subsequences. Commun ACM 18(6):341–343. doi: 10.1145/360825.360861

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem