Defez Candel, E.; Tung ., MM.; Ibáñez González, JJ.; Sastre, J. (2012). Approximating and computing nonlinear matrix differential models. Mathematical and Computer Modelling. 55(7):2012-2022. doi:10.1016/j.mcm.2011.11.060
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/44111
Title:
|
Approximating and computing nonlinear matrix differential models
|
Author:
|
Defez Candel, Emilio
Tung ., Michael Ming-Sha
Ibáñez González, Jacinto Javier
Sastre, Jorge
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
|
Issued date:
|
|
Abstract:
|
Differential matrix models are an essential ingredient of many important scientific and
engineering applications. In this work, we propose a procedure to represent the solutions
of first-order matrix differential equations ...[+]
Differential matrix models are an essential ingredient of many important scientific and
engineering applications. In this work, we propose a procedure to represent the solutions
of first-order matrix differential equations Y(x) = f(x, Y(x)) with approximate matrix
splines. For illustration of the method, we choose one scalar example, a simple vector
model, and finally a Sylvester matrix differential equation as a test.
[-]
|
Subjects:
|
First-order matrix differential equations
,
Higher-order matrix splines
,
Matrix differential models
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
Mathematical and Computer Modelling. (issn:
0895-7177
)
|
DOI:
|
10.1016/j.mcm.2011.11.060
|
Publisher:
|
Elsevier
|
Publisher version:
|
http://dx.doi.org/doi:10.1016/j.mcm.2011.11.060
|
Project ID:
|
Universitat Politecnica de Valencia, Spain [PAID-06-11-2020]
|
Description:
|
NOTICE: this is the author’s version of a work that was accepted for publication in Mathematical and Computer Modelling. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Mathematical and Computer Modelling
Volume 55, Issues 7–8, April 2012, Pages 2012–2022
DOI: 10.1016/j.mcm.2011.11.060
|
Thanks:
|
This work has been supported by grant PAID-06-11-2020 from the Universitat Politecnica de Valencia, Spain.
|
Type:
|
Artículo
|