Mostrar el registro sencillo del ítem
dc.contributor.author | Defez Candel, Emilio | es_ES |
dc.contributor.author | Tung ., Michael Ming-Sha | es_ES |
dc.contributor.author | Ibáñez González, Jacinto Javier | es_ES |
dc.contributor.author | Sastre, Jorge | es_ES |
dc.date.accessioned | 2014-11-12T16:41:17Z | |
dc.date.available | 2014-11-12T16:41:17Z | |
dc.date.issued | 2012-04 | |
dc.identifier.issn | 0895-7177 | |
dc.identifier.uri | http://hdl.handle.net/10251/44111 | |
dc.description | NOTICE: this is the author’s version of a work that was accepted for publication in Mathematical and Computer Modelling. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Mathematical and Computer Modelling Volume 55, Issues 7–8, April 2012, Pages 2012–2022 DOI: 10.1016/j.mcm.2011.11.060 | es_ES |
dc.description.abstract | Differential matrix models are an essential ingredient of many important scientific and engineering applications. In this work, we propose a procedure to represent the solutions of first-order matrix differential equations Y(x) = f(x, Y(x)) with approximate matrix splines. For illustration of the method, we choose one scalar example, a simple vector model, and finally a Sylvester matrix differential equation as a test. | es_ES |
dc.description.sponsorship | This work has been supported by grant PAID-06-11-2020 from the Universitat Politecnica de Valencia, Spain. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Mathematical and Computer Modelling | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | First-order matrix differential equations | es_ES |
dc.subject | Higher-order matrix splines | es_ES |
dc.subject | Matrix differential models | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Approximating and computing nonlinear matrix differential models | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.mcm.2011.11.060 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-11-2020/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Defez Candel, E.; Tung ., MM.; Ibáñez González, JJ.; Sastre, J. (2012). Approximating and computing nonlinear matrix differential models. Mathematical and Computer Modelling. 55(7):2012-2022. https://doi.org/10.1016/j.mcm.2011.11.060 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/doi:10.1016/j.mcm.2011.11.060 | es_ES |
dc.description.upvformatpinicio | 2012 | es_ES |
dc.description.upvformatpfin | 2022 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 55 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.senia | 236951 | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |