Mostrar el registro sencillo del ítem
dc.contributor.author | Alvarez, V. | es_ES |
dc.contributor.author | Borges, F. I. G. | es_ES |
dc.contributor.author | Carcel, S. | es_ES |
dc.contributor.author | Cebrian, S. | es_ES |
dc.contributor.author | Cervera, A. | es_ES |
dc.contributor.author | Conde, C. A. N. | es_ES |
dc.contributor.author | Dafni, T. | es_ES |
dc.contributor.author | Diaz, J. | es_ES |
dc.contributor.author | Egorov, M. | es_ES |
dc.contributor.author | Esteve Bosch, Raul | es_ES |
dc.contributor.author | Marí Romero, Antonio Francisco | es_ES |
dc.contributor.author | Mora Mas, Francisco José | es_ES |
dc.contributor.author | Palma, R. | es_ES |
dc.contributor.author | Pérez Aparicio, José Luis | es_ES |
dc.contributor.author | Toledo Alarcón, José Francisco | |
dc.date.accessioned | 2014-11-17T15:00:21Z | |
dc.date.available | 2014-11-17T15:00:21Z | |
dc.date.issued | 2013-05 | |
dc.identifier.issn | 1748-0221 | |
dc.identifier.uri | http://hdl.handle.net/10251/44308 | |
dc.description.abstract | High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas. | es_ES |
dc.description.sponsorship | This work was supported by the following agencies and institutions: the Spanish Ministerio de Economia y Competitividad under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP) and FPA2009-13697-C04-04; the Portuguese FCT and FEDER through the program COMPETE, projects PTDC/FIS/103860/2008 and PTDC/FIS/112272/2009; and the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. J. Renner (LBNL) acknowledges the support of a US DOE NNSA Stewardship Science Graduate Fellowship under contract no. DE-FC52-08NA28752. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing: Hybrid Open Access | es_ES |
dc.relation.ispartof | Journal of Instrumentation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Charge transport | es_ES |
dc.subject | Multiplication and electroluminescence in rare gases and liquids | es_ES |
dc.subject | Gaseous detectors | es_ES |
dc.subject | Double-beta decay detectors | es_ES |
dc.subject | Ionization and excitation processes | es_ES |
dc.subject.classification | MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Ionization and scintillation response of high-pressure xenon gas to alpha particles | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/1748-0221/8/05/P05025 | |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/5876-PPCDTI/112272/PT/High Pressure Xenon Doped Mixtures for the NEXT Collaboration/ | en_EN |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FPA2009-13697-C04-04/ES/Fisica Experimental De Neutrinos En El Ific/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/5876-PPCDTI/103860/PT/Participation in the international collaboration/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/DOE//DE-AC02-05CH11231/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DOE//DE-FC52-08NA28752/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2008-00037/ES/Canfranc Underground Physics/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.description.bibliographicCitation | Alvarez, V.; Borges, FIG.; Carcel, S.; Cebrian, S.; Cervera, A.; Conde, CAN.; Dafni, T.... (2013). Ionization and scintillation response of high-pressure xenon gas to alpha particles. Journal of Instrumentation. 8(5):1-35. https://doi.org/10.1088/1748-0221/8/05/P05025 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1088/1748-0221/8/05/P05025 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 35 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 246007 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | U.S. Department of Energy | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | |
dc.description.references | Nygren, D. (2007). Optimal detectors for WIMP and 0–ν ββ searches: Identical high-pressure xenon gas TPCs? Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 581(3), 632-642. doi:10.1016/j.nima.2007.07.062 | es_ES |
dc.description.references | AKIMOV, D., ALNER, G., ARAUJO, H., BEWICK, A., BUNGAU, C., BURENKOV, A., … CLINE, D. (2007). The ZEPLIN-III dark matter detector: Instrument design, manufacture and commissioning. Astroparticle Physics, 27(1), 46-60. doi:10.1016/j.astropartphys.2006.09.005 | es_ES |
dc.description.references | Abe, K., Hieda, K., Hiraide, K., Hirano, S., Kishimoto, Y., Kobayashi, K., … Nakamura, S. (2013). XMASS detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 716, 78-85. doi:10.1016/j.nima.2013.03.059 | es_ES |
dc.description.references | Aprile, E., Arisaka, K., Arneodo, F., Askin, A., Baudis, L., Behrens, A., … Yamashita, M. (2012). The XENON100 dark matter experiment. Astroparticle Physics, 35(9), 573-590. doi:10.1016/j.astropartphys.2012.01.003 | es_ES |
dc.description.references | Akerib, D. S., Bai, X., Bedikian, S., Bernard, E., Bernstein, A., Bolozdynya, A., … Camp, C. (2013). The Large Underground Xenon (LUX) experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 704, 111-126. doi:10.1016/j.nima.2012.11.135 | es_ES |
dc.description.references | Auger, M., Auty, D. J., Barbeau, P. S., Bartoszek, L., Baussan, E., Beauchamp, E., … Cleveland, B. (2012). The EXO-200 detector, part I: detector design and construction. Journal of Instrumentation, 7(05), P05010-P05010. doi:10.1088/1748-0221/7/05/p05010 | es_ES |
dc.description.references | Adam, J., Bai, X., Baldini, A., Baracchini, E., Barchiesi, A., Bemporad, C., … Cecchet, G. (2010). A limit for the decay from the MEG experiment. Nuclear Physics B, 834(1-2), 1-12. doi:10.1016/j.nuclphysb.2010.03.030 | es_ES |
dc.description.references | Jahoda, K., Markwardt, C. B., Radeva, Y., Rots, A. H., Stark, M. J., Swank, J. H., … Zhang, W. (2006). Calibration of theRossi X‐Ray Timing ExplorerProportional Counter Array. The Astrophysical Journal Supplement Series, 163(2), 401-423. doi:10.1086/500659 | es_ES |
dc.description.references | Aprile, E., Curioni, A., Giboni, K. L., Kobayashi, M., Oberlack, U. G., & Zhang, S. (2008). Compton imaging of MeV gamma-rays with the Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 593(3), 414-425. doi:10.1016/j.nima.2008.05.039 | es_ES |
dc.description.references | Giboni, K., Aprile, E., Doke, T., Suzuki, S., Fernandes, L. M. P., Lopes, J. A. M., & Santos, J. M. F. dos. (2007). Compton Positron Emission Tomography with a Liquid Xenon Time Projection Chamber. Journal of Instrumentation, 2(10), P10001-P10001. doi:10.1088/1748-0221/2/10/p10001 | es_ES |
dc.description.references | Grignon, C., Barbet, J., Bardiès, M., Carlier, T., Chatal, J. F., Couturier, O., … Thers, D. (2007). Nuclear medical imaging using β+γ coincidences from 44Sc radio-nuclide with liquid xenon as detection medium. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 571(1-2), 142-145. doi:10.1016/j.nima.2006.10.048 | es_ES |
dc.description.references | Aprile, E., & Doke, T. (2010). Liquid xenon detectors for particle physics and astrophysics. Reviews of Modern Physics, 82(3), 2053-2097. doi:10.1103/revmodphys.82.2053 | es_ES |
dc.description.references | Aprile, E., Bolotnikov, A. E., Bolozdynya, A. I., & Doke, T. (2006). Noble Gas Detectors. doi:10.1002/9783527610020 | es_ES |
dc.description.references | Vinagre, F. L. ., & Conde, C. A. . (2000). A technique for the absolute measurement of the W-value for X-rays in counting gases. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 450(2-3), 365-372. doi:10.1016/s0168-9002(00)00310-7 | es_ES |
dc.description.references | Platzman, R. L. (1961). Total ionization in gases by high-energy particles: An appraisal of our understanding. The International Journal of Applied Radiation and Isotopes, 10(2-3), 116-127. doi:10.1016/0020-708x(61)90108-9 | es_ES |
dc.description.references | Hurst, G. S., Stewart, T. E., & Parks, J. E. (1970). Vacuum Ultraviolet Radiation and Jesse Effects in the Noble Gases. Physical Review A, 2(5), 1717-1720. doi:10.1103/physreva.2.1717 | es_ES |
dc.description.references | Ahlen, S. P. (1980). Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles. Reviews of Modern Physics, 52(1), 121-173. doi:10.1103/revmodphys.52.121 | es_ES |
dc.description.references | Nygren, D. (2009). High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 603(3), 337-348. doi:10.1016/j.nima.2009.01.222 | es_ES |
dc.description.references | Bolotnikov, A., & Ramsey, B. (1997). The spectroscopic properties of high-pressure xenon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 396(3), 360-370. doi:10.1016/s0168-9002(97)00784-5 | es_ES |
dc.description.references | Jesse, W. P., & Sadaukis, J. (1957). Absolute Energy to Produce an Ion Pair by Beta Particles fromS35. Physical Review, 107(3), 766-771. doi:10.1103/physrev.107.766 | es_ES |
dc.description.references | Luescher, R., Farine, J., Boehm, F., Busto, J., Gabathuler, K., Gervasio, G., … Wong, H. (1998). Search for ββ decay in 136Xe: new results from the Gotthard experiment. Physics Letters B, 434(3-4), 407-414. doi:10.1016/s0370-2693(98)00906-x | es_ES |
dc.description.references | Pushkin, K. N., Hasebe, N., Tezuka, C., Kobayashi, S., Mimura, M., Hosojima, T., … Ulin, S. E. (2006). A scintillation response and an ionization yield in pure xenon and mixtures of it with methane. Instruments and Experimental Techniques, 49(4), 489-493. doi:10.1134/s0020441206040063 | es_ES |
dc.description.references | Parsons, A., Edberg, T. K., Sadoulet, B., Weiss, S., Wilkerson, J., Hurley, K., … Smith, G. (1990). High pressure gas scintillation drift chambers with wave-shifter fiber readout. IEEE Transactions on Nuclear Science, 37(2), 541-546. doi:10.1109/23.106674 | es_ES |
dc.description.references | Carmo, S. J. C. do, Borges, F. I. G. M., Santos, F. P., Dias, T. H. V. T., & Conde, C. A. N. (2008). Absolute primary scintillation yield of gaseous xenon under low drift electric fields for 5.9 keV X-rays. Journal of Instrumentation, 3(07), P07004-P07004. doi:10.1088/1748-0221/3/07/p07004 | es_ES |
dc.description.references | Fernandes, L. M. P., Freitas, E. D. C., Ball, M., Gómez-Cadenas, J. J., Monteiro, C. M. B., Yahlali, N., … Santos, J. M. F. dos. (2010). Primary and secondary scintillation measurements in a Xenon Gas Proportional Scintillation Counter. Journal of Instrumentation, 5(09), P09006-P09006. doi:10.1088/1748-0221/5/09/p09006 | es_ES |
dc.description.references | Resnati, F., Gendotti, U., Chandra, R., Curioni, A., Davatz, G., Friederich, H., … Rubbia, A. (2013). Suitability of high-pressure xenon as scintillator for gamma ray spectroscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 715, 87-91. doi:10.1016/j.nima.2013.03.008 | es_ES |
dc.description.references | Doke, T., Hitachi, A., Kikuchi, J., Masuda, K., Okada, H., & Shibamura, E. (2002). Absolute Scintillation Yields in Liquid Argon and Xenon for Various Particles. Japanese Journal of Applied Physics, 41(Part 1, No. 3A), 1538-1545. doi:10.1143/jjap.41.1538 | es_ES |
dc.description.references | Tanaka, M., Doke, T., Hitachi, A., Kato, T., Kikuchi, J., Masuda, K., … Yoshihira, E. (2001). LET dependence of scintillation yields in liquid xenon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 457(3), 454-463. doi:10.1016/s0168-9002(00)00785-3 | es_ES |
dc.description.references | Hitachi, A., Doke, T., & Mozumder, A. (1992). Luminescence quenching in liquid argon under charged-particle impact: Relative scintillation yield at different linear energy transfers. Physical Review B, 46(18), 11463-11470. doi:10.1103/physrevb.46.11463 | es_ES |
dc.description.references | Kusano, H., Ishikawa, T., Lopes, J. A. M., Miyajima, M., Shibamura, E., & Hasebe, N. (2012). Scintillation and ionization yields produced by in high-density gaseous xenon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 683, 40-45. doi:10.1016/j.nima.2012.04.074 | es_ES |
dc.description.references | Bogdanov, E. A., Kudryavtsev, A. A., Arslanbekov, R. R., & Kolobov, V. I. (2004). Simulation of pulsed dielectric barrier discharge xenon excimer lamp. Journal of Physics D: Applied Physics, 37(21), 2987-2995. doi:10.1088/0022-3727/37/21/008 | es_ES |
dc.description.references | Pushkin, K. N., Hasebe, N., Kobayashi, S., Tezuka, C., Mimura, M., Hosojima, T., … Dmitrenko, V. V. (s. f.). Scintillation yield in high pressure xenon and xenon doped with methane. IEEE Symposium Conference Record Nuclear Science 2004. doi:10.1109/nssmic.2004.1462255 | es_ES |
dc.description.references | Bolotnikov, A., & Ramsey, B. (1999). Studies of light and charge produced by alpha-particles in high-pressure xenon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 428(2-3), 391-402. doi:10.1016/s0168-9002(99)00173-4 | es_ES |
dc.description.references | Kobayashi, S., Hasebe, N., Igarashi, T., Kobayashi, M.-N., Miyachi, T., Miyajima, M., … Vlasik, K. F. (2004). Scintillation luminescence for high-pressure xenon gas. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 531(1-2), 327-332. doi:10.1016/j.nima.2004.06.024 | es_ES |
dc.description.references | Saito, K., Sasaki, S., Tawara, H., Sanami, T., & Shibamura, E. (2003). Simultaneous measurements of absolute numbers of electrons and scintillation photons produced by 5.49 MeV alpha particles in rare gases. IEEE Transactions on Nuclear Science, 50(6), 2452-2459. doi:10.1109/tns.2003.820615 | es_ES |
dc.description.references | Conti, E., DeVoe, R., Gratta, G., Koffas, T., Waldman, S., Wodin, J., … Zeldovich, O. (2003). Correlated fluctuations between luminescence and ionization in liquid xenon. Physical Review B, 68(5). doi:10.1103/physrevb.68.054201 | es_ES |
dc.description.references | Aprile, E., Giboni, K. L., Majewski, P., Ni, K., & Yamashita, M. (2007). Observation of anticorrelation between scintillation and ionization for MeV gamma rays in liquid xenon. Physical Review B, 76(1). doi:10.1103/physrevb.76.014115 | es_ES |
dc.description.references | Jaffé, G. (1913). Zur Theorie der Ionisation in Kolonnen. Annalen der Physik, 347(12), 303-344. doi:10.1002/andp.19133471205 | es_ES |
dc.description.references | Onsager, L. (1938). Initial Recombination of Ions. Physical Review, 54(8), 554-557. doi:10.1103/physrev.54.554 | es_ES |
dc.description.references | Fraser, G. W., & Mathieson, E. (1986). Monte Carlo calculation of electron transport coefficients in counting gas mixtures. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 247(3), 544-565. doi:10.1016/0168-9002(86)90417-1 | es_ES |
dc.description.references | Biagi, S. F. (1999). Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 421(1-2), 234-240. doi:10.1016/s0168-9002(98)01233-9 | es_ES |
dc.description.references | Escada, J., Dias, T. H. V. T., Santos, F. P., Rachinhas, P. J. B. M., Conde, C. A. N., & Stauffer, A. D. (2011). A Monte Carlo study of the fluctuations in Xe electroluminescence yield: pure Xe vs Xe doped with CH4or CF4and planar vs cylindrical geometries. Journal of Instrumentation, 6(08), P08006-P08006. doi:10.1088/1748-0221/6/08/p08006 | es_ES |
dc.description.references | Álvarez, V., Borges, F. I. G. M., Cárcel, S., Carmona, J. M., Castel, J., Catalá, J. M., … Conde, C. A. N. (2012). NEXT-100 Technical Design Report (TDR). Executive summary. Journal of Instrumentation, 7(06), T06001-T06001. doi:10.1088/1748-0221/7/06/t06001 | es_ES |
dc.description.references | Álvarez, V., Borges, F. I. G., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment. Journal of Instrumentation, 8(04), P04002-P04002. doi:10.1088/1748-0221/8/04/p04002 | es_ES |
dc.description.references | Gil, A., Díaz, J., Gómez-Cadenas, J. J., Herrero, V., Rodriguez, J., Serra, L., … Yahlali, N. (2012). Front-end electronics for accurate energy measurement of double beta decays. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 695, 407-409. doi:10.1016/j.nima.2011.11.024 | es_ES |
dc.description.references | Martoiu, S., Muller, H., Tarazona, A., & Toledo, J. (2013). Development of the scalable readout system for micro-pattern gas detectors and other applications. Journal of Instrumentation, 8(03), C03015-C03015. doi:10.1088/1748-0221/8/03/c03015 | es_ES |
dc.description.references | Argyriades, J., Arnold, R., Augier, C., Baker, J., Barabash, A. S., Bongrand, M., … Chapon, A. (2009). Measurement of the background in the NEMO 3 double beta decay experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 606(3), 449-465. doi:10.1016/j.nima.2009.04.011 | es_ES |
dc.description.references | Oliveira, C. A. B., Sorel, M., Martin-Albo, J., Gomez-Cadenas, J. J., Ferreira, A. L., & Veloso, J. F. C. A. (2011). Energy resolution studies for NEXT. Journal of Instrumentation, 6(05), P05007-P05007. doi:10.1088/1748-0221/6/05/p05007 | es_ES |
dc.description.references | Hagelaar, G. J. M., & Pitchford, L. C. (2005). Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Science and Technology, 14(4), 722-733. doi:10.1088/0963-0252/14/4/011 | es_ES |
dc.description.references | Cennini, P., Cittolin, S., Revol, J.-P., Rubbia, C., Tian, W.-H., Picchi, P., … Suzuki, S. (1994). Performance of a three-ton liquid argon time projection chamber. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 345(2), 230-243. doi:10.1016/0168-9002(94)90996-2 | es_ES |
dc.description.references | Sorensen, P. (2011). Anisotropic diffusion of electrons in liquid xenon with application to improving the sensitivity of direct dark matter searches. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 635(1), 41-43. doi:10.1016/j.nima.2011.01.089 | es_ES |
dc.description.references | Álvarez, V., Borges, F. I. G. M., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Near-intrinsic energy resolution for 30–662keV gamma rays in a high pressure xenon electroluminescent TPC. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 708, 101-114. doi:10.1016/j.nima.2012.12.123 | es_ES |
dc.description.references | Bunemann, O., Cranshaw, T. E., & Harvey, J. A. (1949). DESIGN OF GRID IONIZATION CHAMBERS. Canadian Journal of Research, 27a(5), 191-206. doi:10.1139/cjr49a-019 | es_ES |