- -

Ionization and scintillation response of high-pressure xenon gas to alpha particles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ionization and scintillation response of high-pressure xenon gas to alpha particles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alvarez, V. es_ES
dc.contributor.author Borges, F. I. G. es_ES
dc.contributor.author Carcel, S. es_ES
dc.contributor.author Cebrian, S. es_ES
dc.contributor.author Cervera, A. es_ES
dc.contributor.author Conde, C. A. N. es_ES
dc.contributor.author Dafni, T. es_ES
dc.contributor.author Diaz, J. es_ES
dc.contributor.author Egorov, M. es_ES
dc.contributor.author Esteve Bosch, Raul es_ES
dc.contributor.author Marí Romero, Antonio Francisco es_ES
dc.contributor.author Mora Mas, Francisco José es_ES
dc.contributor.author Palma, R. es_ES
dc.contributor.author Pérez Aparicio, José Luis es_ES
dc.contributor.author Toledo Alarcón, José Francisco
dc.date.accessioned 2014-11-17T15:00:21Z
dc.date.available 2014-11-17T15:00:21Z
dc.date.issued 2013-05
dc.identifier.issn 1748-0221
dc.identifier.uri http://hdl.handle.net/10251/44308
dc.description.abstract High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas. es_ES
dc.description.sponsorship This work was supported by the following agencies and institutions: the Spanish Ministerio de Economia y Competitividad under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP) and FPA2009-13697-C04-04; the Portuguese FCT and FEDER through the program COMPETE, projects PTDC/FIS/103860/2008 and PTDC/FIS/112272/2009; and the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. J. Renner (LBNL) acknowledges the support of a US DOE NNSA Stewardship Science Graduate Fellowship under contract no. DE-FC52-08NA28752. en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Journal of Instrumentation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Charge transport es_ES
dc.subject Multiplication and electroluminescence in rare gases and liquids es_ES
dc.subject Gaseous detectors es_ES
dc.subject Double-beta decay detectors es_ES
dc.subject Ionization and excitation processes es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Ionization and scintillation response of high-pressure xenon gas to alpha particles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1748-0221/8/05/P05025
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876-PPCDTI/112272/PT/High Pressure Xenon Doped Mixtures for the NEXT Collaboration/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FPA2009-13697-C04-04/ES/Fisica Experimental De Neutrinos En El Ific/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876-PPCDTI/103860/PT/Participation in the international collaboration/
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC02-05CH11231/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-FC52-08NA28752/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00037/ES/Canfranc Underground Physics/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.description.bibliographicCitation Alvarez, V.; Borges, FIG.; Carcel, S.; Cebrian, S.; Cervera, A.; Conde, CAN.; Dafni, T.... (2013). Ionization and scintillation response of high-pressure xenon gas to alpha particles. Journal of Instrumentation. 8(5):1-35. https://doi.org/10.1088/1748-0221/8/05/P05025 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/1748-0221/8/05/P05025 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 35 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 246007
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal
dc.description.references Nygren, D. (2007). Optimal detectors for WIMP and 0–ν ββ searches: Identical high-pressure xenon gas TPCs? Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 581(3), 632-642. doi:10.1016/j.nima.2007.07.062 es_ES
dc.description.references AKIMOV, D., ALNER, G., ARAUJO, H., BEWICK, A., BUNGAU, C., BURENKOV, A., … CLINE, D. (2007). The ZEPLIN-III dark matter detector: Instrument design, manufacture and commissioning. Astroparticle Physics, 27(1), 46-60. doi:10.1016/j.astropartphys.2006.09.005 es_ES
dc.description.references Abe, K., Hieda, K., Hiraide, K., Hirano, S., Kishimoto, Y., Kobayashi, K., … Nakamura, S. (2013). XMASS detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 716, 78-85. doi:10.1016/j.nima.2013.03.059 es_ES
dc.description.references Aprile, E., Arisaka, K., Arneodo, F., Askin, A., Baudis, L., Behrens, A., … Yamashita, M. (2012). The XENON100 dark matter experiment. Astroparticle Physics, 35(9), 573-590. doi:10.1016/j.astropartphys.2012.01.003 es_ES
dc.description.references Akerib, D. S., Bai, X., Bedikian, S., Bernard, E., Bernstein, A., Bolozdynya, A., … Camp, C. (2013). The Large Underground Xenon (LUX) experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 704, 111-126. doi:10.1016/j.nima.2012.11.135 es_ES
dc.description.references Auger, M., Auty, D. J., Barbeau, P. S., Bartoszek, L., Baussan, E., Beauchamp, E., … Cleveland, B. (2012). The EXO-200 detector, part I: detector design and construction. Journal of Instrumentation, 7(05), P05010-P05010. doi:10.1088/1748-0221/7/05/p05010 es_ES
dc.description.references Adam, J., Bai, X., Baldini, A., Baracchini, E., Barchiesi, A., Bemporad, C., … Cecchet, G. (2010). A limit for the decay from the MEG experiment. Nuclear Physics B, 834(1-2), 1-12. doi:10.1016/j.nuclphysb.2010.03.030 es_ES
dc.description.references Jahoda, K., Markwardt, C. B., Radeva, Y., Rots, A. H., Stark, M. J., Swank, J. H., … Zhang, W. (2006). Calibration of theRossi X‐Ray Timing ExplorerProportional Counter Array. The Astrophysical Journal Supplement Series, 163(2), 401-423. doi:10.1086/500659 es_ES
dc.description.references Aprile, E., Curioni, A., Giboni, K. L., Kobayashi, M., Oberlack, U. G., & Zhang, S. (2008). Compton imaging of MeV gamma-rays with the Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 593(3), 414-425. doi:10.1016/j.nima.2008.05.039 es_ES
dc.description.references Giboni, K., Aprile, E., Doke, T., Suzuki, S., Fernandes, L. M. P., Lopes, J. A. M., & Santos, J. M. F. dos. (2007). Compton Positron Emission Tomography with a Liquid Xenon Time Projection Chamber. Journal of Instrumentation, 2(10), P10001-P10001. doi:10.1088/1748-0221/2/10/p10001 es_ES
dc.description.references Grignon, C., Barbet, J., Bardiès, M., Carlier, T., Chatal, J. F., Couturier, O., … Thers, D. (2007). Nuclear medical imaging using β+γ coincidences from 44Sc radio-nuclide with liquid xenon as detection medium. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 571(1-2), 142-145. doi:10.1016/j.nima.2006.10.048 es_ES
dc.description.references Aprile, E., & Doke, T. (2010). Liquid xenon detectors for particle physics and astrophysics. Reviews of Modern Physics, 82(3), 2053-2097. doi:10.1103/revmodphys.82.2053 es_ES
dc.description.references Aprile, E., Bolotnikov, A. E., Bolozdynya, A. I., & Doke, T. (2006). Noble Gas Detectors. doi:10.1002/9783527610020 es_ES
dc.description.references Vinagre, F. L. ., & Conde, C. A. . (2000). A technique for the absolute measurement of the W-value for X-rays in counting gases. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 450(2-3), 365-372. doi:10.1016/s0168-9002(00)00310-7 es_ES
dc.description.references Platzman, R. L. (1961). Total ionization in gases by high-energy particles: An appraisal of our understanding. The International Journal of Applied Radiation and Isotopes, 10(2-3), 116-127. doi:10.1016/0020-708x(61)90108-9 es_ES
dc.description.references Hurst, G. S., Stewart, T. E., & Parks, J. E. (1970). Vacuum Ultraviolet Radiation and Jesse Effects in the Noble Gases. Physical Review A, 2(5), 1717-1720. doi:10.1103/physreva.2.1717 es_ES
dc.description.references Ahlen, S. P. (1980). Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles. Reviews of Modern Physics, 52(1), 121-173. doi:10.1103/revmodphys.52.121 es_ES
dc.description.references Nygren, D. (2009). High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 603(3), 337-348. doi:10.1016/j.nima.2009.01.222 es_ES
dc.description.references Bolotnikov, A., & Ramsey, B. (1997). The spectroscopic properties of high-pressure xenon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 396(3), 360-370. doi:10.1016/s0168-9002(97)00784-5 es_ES
dc.description.references Jesse, W. P., & Sadaukis, J. (1957). Absolute Energy to Produce an Ion Pair by Beta Particles fromS35. Physical Review, 107(3), 766-771. doi:10.1103/physrev.107.766 es_ES
dc.description.references Luescher, R., Farine, J., Boehm, F., Busto, J., Gabathuler, K., Gervasio, G., … Wong, H. (1998). Search for ββ decay in 136Xe: new results from the Gotthard experiment. Physics Letters B, 434(3-4), 407-414. doi:10.1016/s0370-2693(98)00906-x es_ES
dc.description.references Pushkin, K. N., Hasebe, N., Tezuka, C., Kobayashi, S., Mimura, M., Hosojima, T., … Ulin, S. E. (2006). A scintillation response and an ionization yield in pure xenon and mixtures of it with methane. Instruments and Experimental Techniques, 49(4), 489-493. doi:10.1134/s0020441206040063 es_ES
dc.description.references Parsons, A., Edberg, T. K., Sadoulet, B., Weiss, S., Wilkerson, J., Hurley, K., … Smith, G. (1990). High pressure gas scintillation drift chambers with wave-shifter fiber readout. IEEE Transactions on Nuclear Science, 37(2), 541-546. doi:10.1109/23.106674 es_ES
dc.description.references Carmo, S. J. C. do, Borges, F. I. G. M., Santos, F. P., Dias, T. H. V. T., & Conde, C. A. N. (2008). Absolute primary scintillation yield of gaseous xenon under low drift electric fields for 5.9 keV X-rays. Journal of Instrumentation, 3(07), P07004-P07004. doi:10.1088/1748-0221/3/07/p07004 es_ES
dc.description.references Fernandes, L. M. P., Freitas, E. D. C., Ball, M., Gómez-Cadenas, J. J., Monteiro, C. M. B., Yahlali, N., … Santos, J. M. F. dos. (2010). Primary and secondary scintillation measurements in a Xenon Gas Proportional Scintillation Counter. Journal of Instrumentation, 5(09), P09006-P09006. doi:10.1088/1748-0221/5/09/p09006 es_ES
dc.description.references Resnati, F., Gendotti, U., Chandra, R., Curioni, A., Davatz, G., Friederich, H., … Rubbia, A. (2013). Suitability of high-pressure xenon as scintillator for gamma ray spectroscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 715, 87-91. doi:10.1016/j.nima.2013.03.008 es_ES
dc.description.references Doke, T., Hitachi, A., Kikuchi, J., Masuda, K., Okada, H., & Shibamura, E. (2002). Absolute Scintillation Yields in Liquid Argon and Xenon for Various Particles. Japanese Journal of Applied Physics, 41(Part 1, No. 3A), 1538-1545. doi:10.1143/jjap.41.1538 es_ES
dc.description.references Tanaka, M., Doke, T., Hitachi, A., Kato, T., Kikuchi, J., Masuda, K., … Yoshihira, E. (2001). LET dependence of scintillation yields in liquid xenon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 457(3), 454-463. doi:10.1016/s0168-9002(00)00785-3 es_ES
dc.description.references Hitachi, A., Doke, T., & Mozumder, A. (1992). Luminescence quenching in liquid argon under charged-particle impact: Relative scintillation yield at different linear energy transfers. Physical Review B, 46(18), 11463-11470. doi:10.1103/physrevb.46.11463 es_ES
dc.description.references Kusano, H., Ishikawa, T., Lopes, J. A. M., Miyajima, M., Shibamura, E., & Hasebe, N. (2012). Scintillation and ionization yields produced by in high-density gaseous xenon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 683, 40-45. doi:10.1016/j.nima.2012.04.074 es_ES
dc.description.references Bogdanov, E. A., Kudryavtsev, A. A., Arslanbekov, R. R., & Kolobov, V. I. (2004). Simulation of pulsed dielectric barrier discharge xenon excimer lamp. Journal of Physics D: Applied Physics, 37(21), 2987-2995. doi:10.1088/0022-3727/37/21/008 es_ES
dc.description.references Pushkin, K. N., Hasebe, N., Kobayashi, S., Tezuka, C., Mimura, M., Hosojima, T., … Dmitrenko, V. V. (s. f.). Scintillation yield in high pressure xenon and xenon doped with methane. IEEE Symposium Conference Record Nuclear Science 2004. doi:10.1109/nssmic.2004.1462255 es_ES
dc.description.references Bolotnikov, A., & Ramsey, B. (1999). Studies of light and charge produced by alpha-particles in high-pressure xenon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 428(2-3), 391-402. doi:10.1016/s0168-9002(99)00173-4 es_ES
dc.description.references Kobayashi, S., Hasebe, N., Igarashi, T., Kobayashi, M.-N., Miyachi, T., Miyajima, M., … Vlasik, K. F. (2004). Scintillation luminescence for high-pressure xenon gas. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 531(1-2), 327-332. doi:10.1016/j.nima.2004.06.024 es_ES
dc.description.references Saito, K., Sasaki, S., Tawara, H., Sanami, T., & Shibamura, E. (2003). Simultaneous measurements of absolute numbers of electrons and scintillation photons produced by 5.49 MeV alpha particles in rare gases. IEEE Transactions on Nuclear Science, 50(6), 2452-2459. doi:10.1109/tns.2003.820615 es_ES
dc.description.references Conti, E., DeVoe, R., Gratta, G., Koffas, T., Waldman, S., Wodin, J., … Zeldovich, O. (2003). Correlated fluctuations between luminescence and ionization in liquid xenon. Physical Review B, 68(5). doi:10.1103/physrevb.68.054201 es_ES
dc.description.references Aprile, E., Giboni, K. L., Majewski, P., Ni, K., & Yamashita, M. (2007). Observation of anticorrelation between scintillation and ionization for MeV gamma rays in liquid xenon. Physical Review B, 76(1). doi:10.1103/physrevb.76.014115 es_ES
dc.description.references Jaffé, G. (1913). Zur Theorie der Ionisation in Kolonnen. Annalen der Physik, 347(12), 303-344. doi:10.1002/andp.19133471205 es_ES
dc.description.references Onsager, L. (1938). Initial Recombination of Ions. Physical Review, 54(8), 554-557. doi:10.1103/physrev.54.554 es_ES
dc.description.references Fraser, G. W., & Mathieson, E. (1986). Monte Carlo calculation of electron transport coefficients in counting gas mixtures. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 247(3), 544-565. doi:10.1016/0168-9002(86)90417-1 es_ES
dc.description.references Biagi, S. F. (1999). Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 421(1-2), 234-240. doi:10.1016/s0168-9002(98)01233-9 es_ES
dc.description.references Escada, J., Dias, T. H. V. T., Santos, F. P., Rachinhas, P. J. B. M., Conde, C. A. N., & Stauffer, A. D. (2011). A Monte Carlo study of the fluctuations in Xe electroluminescence yield: pure Xe vs Xe doped with CH4or CF4and planar vs cylindrical geometries. Journal of Instrumentation, 6(08), P08006-P08006. doi:10.1088/1748-0221/6/08/p08006 es_ES
dc.description.references Álvarez, V., Borges, F. I. G. M., Cárcel, S., Carmona, J. M., Castel, J., Catalá, J. M., … Conde, C. A. N. (2012). NEXT-100 Technical Design Report (TDR). Executive summary. Journal of Instrumentation, 7(06), T06001-T06001. doi:10.1088/1748-0221/7/06/t06001 es_ES
dc.description.references Álvarez, V., Borges, F. I. G., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment. Journal of Instrumentation, 8(04), P04002-P04002. doi:10.1088/1748-0221/8/04/p04002 es_ES
dc.description.references Gil, A., Díaz, J., Gómez-Cadenas, J. J., Herrero, V., Rodriguez, J., Serra, L., … Yahlali, N. (2012). Front-end electronics for accurate energy measurement of double beta decays. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 695, 407-409. doi:10.1016/j.nima.2011.11.024 es_ES
dc.description.references Martoiu, S., Muller, H., Tarazona, A., & Toledo, J. (2013). Development of the scalable readout system for micro-pattern gas detectors and other applications. Journal of Instrumentation, 8(03), C03015-C03015. doi:10.1088/1748-0221/8/03/c03015 es_ES
dc.description.references Argyriades, J., Arnold, R., Augier, C., Baker, J., Barabash, A. S., Bongrand, M., … Chapon, A. (2009). Measurement of the background in the NEMO 3 double beta decay experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 606(3), 449-465. doi:10.1016/j.nima.2009.04.011 es_ES
dc.description.references Oliveira, C. A. B., Sorel, M., Martin-Albo, J., Gomez-Cadenas, J. J., Ferreira, A. L., & Veloso, J. F. C. A. (2011). Energy resolution studies for NEXT. Journal of Instrumentation, 6(05), P05007-P05007. doi:10.1088/1748-0221/6/05/p05007 es_ES
dc.description.references Hagelaar, G. J. M., & Pitchford, L. C. (2005). Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Science and Technology, 14(4), 722-733. doi:10.1088/0963-0252/14/4/011 es_ES
dc.description.references Cennini, P., Cittolin, S., Revol, J.-P., Rubbia, C., Tian, W.-H., Picchi, P., … Suzuki, S. (1994). Performance of a three-ton liquid argon time projection chamber. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 345(2), 230-243. doi:10.1016/0168-9002(94)90996-2 es_ES
dc.description.references Sorensen, P. (2011). Anisotropic diffusion of electrons in liquid xenon with application to improving the sensitivity of direct dark matter searches. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 635(1), 41-43. doi:10.1016/j.nima.2011.01.089 es_ES
dc.description.references Álvarez, V., Borges, F. I. G. M., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Near-intrinsic energy resolution for 30–662keV gamma rays in a high pressure xenon electroluminescent TPC. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 708, 101-114. doi:10.1016/j.nima.2012.12.123 es_ES
dc.description.references Bunemann, O., Cranshaw, T. E., & Harvey, J. A. (1949). DESIGN OF GRID IONIZATION CHAMBERS. Canadian Journal of Research, 27a(5), 191-206. doi:10.1139/cjr49a-019 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem