- -

Ionization and scintillation response of high-pressure xenon gas to alpha particles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ionization and scintillation response of high-pressure xenon gas to alpha particles

Mostrar el registro completo del ítem

Alvarez, V.; Borges, FIG.; Carcel, S.; Cebrian, S.; Cervera, A.; Conde, CAN.; Dafni, T.... (2013). Ionization and scintillation response of high-pressure xenon gas to alpha particles. Journal of Instrumentation. 8(5):1-35. https://doi.org/10.1088/1748-0221/8/05/P05025

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/44308

Ficheros en el ítem

Metadatos del ítem

Título: Ionization and scintillation response of high-pressure xenon gas to alpha particles
Autor: Alvarez, V. Borges, F. I. G. Carcel, S. Cebrian, S. Cervera, A. Conde, C. A. N. Dafni, T. Diaz, J. Egorov, M. Esteve Bosch, Raul Marí Romero, Antonio Francisco Mora Mas, Francisco José Palma, R. Pérez Aparicio, José Luis Toledo Alarcón, José Francisco
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures
Fecha difusión:
Resumen:
High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 ...[+]
Palabras clave: Charge transport , Multiplication and electroluminescence in rare gases and liquids , Gaseous detectors , Double-beta decay detectors , Ionization and excitation processes
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Instrumentation. (issn: 1748-0221 )
DOI: 10.1088/1748-0221/8/05/P05025
Editorial:
IOP Publishing: Hybrid Open Access
Versión del editor: http://dx.doi.org/10.1088/1748-0221/8/05/P05025
Código del Proyecto:
info:eu-repo/grantAgreement/FCT/5876-PPCDTI/112272/PT/High Pressure Xenon Doped Mixtures for the NEXT Collaboration/
...[+]
info:eu-repo/grantAgreement/FCT/5876-PPCDTI/112272/PT/High Pressure Xenon Doped Mixtures for the NEXT Collaboration/
info:eu-repo/grantAgreement/MICINN//FPA2009-13697-C04-04/ES/Fisica Experimental De Neutrinos En El Ific/
info:eu-repo/grantAgreement/FCT/5876-PPCDTI/103860/PT/Participation in the international collaboration/
info:eu-repo/grantAgreement/DOE//DE-AC02-05CH11231/
info:eu-repo/grantAgreement/DOE//DE-FC52-08NA28752/
info:eu-repo/grantAgreement/MICINN//CSD2008-00037/ES/Canfranc Underground Physics/
[-]
Agradecimientos:
This work was supported by the following agencies and institutions: the Spanish Ministerio de Economia y Competitividad under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP) and FPA2009-13697-C04-04; the Portuguese FCT ...[+]
Tipo: Artículo

References

Nygren, D. (2007). Optimal detectors for WIMP and 0–ν ββ searches: Identical high-pressure xenon gas TPCs? Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 581(3), 632-642. doi:10.1016/j.nima.2007.07.062

AKIMOV, D., ALNER, G., ARAUJO, H., BEWICK, A., BUNGAU, C., BURENKOV, A., … CLINE, D. (2007). The ZEPLIN-III dark matter detector: Instrument design, manufacture and commissioning. Astroparticle Physics, 27(1), 46-60. doi:10.1016/j.astropartphys.2006.09.005

Abe, K., Hieda, K., Hiraide, K., Hirano, S., Kishimoto, Y., Kobayashi, K., … Nakamura, S. (2013). XMASS detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 716, 78-85. doi:10.1016/j.nima.2013.03.059 [+]
Nygren, D. (2007). Optimal detectors for WIMP and 0–ν ββ searches: Identical high-pressure xenon gas TPCs? Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 581(3), 632-642. doi:10.1016/j.nima.2007.07.062

AKIMOV, D., ALNER, G., ARAUJO, H., BEWICK, A., BUNGAU, C., BURENKOV, A., … CLINE, D. (2007). The ZEPLIN-III dark matter detector: Instrument design, manufacture and commissioning. Astroparticle Physics, 27(1), 46-60. doi:10.1016/j.astropartphys.2006.09.005

Abe, K., Hieda, K., Hiraide, K., Hirano, S., Kishimoto, Y., Kobayashi, K., … Nakamura, S. (2013). XMASS detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 716, 78-85. doi:10.1016/j.nima.2013.03.059

Aprile, E., Arisaka, K., Arneodo, F., Askin, A., Baudis, L., Behrens, A., … Yamashita, M. (2012). The XENON100 dark matter experiment. Astroparticle Physics, 35(9), 573-590. doi:10.1016/j.astropartphys.2012.01.003

Akerib, D. S., Bai, X., Bedikian, S., Bernard, E., Bernstein, A., Bolozdynya, A., … Camp, C. (2013). The Large Underground Xenon (LUX) experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 704, 111-126. doi:10.1016/j.nima.2012.11.135

Auger, M., Auty, D. J., Barbeau, P. S., Bartoszek, L., Baussan, E., Beauchamp, E., … Cleveland, B. (2012). The EXO-200 detector, part I: detector design and construction. Journal of Instrumentation, 7(05), P05010-P05010. doi:10.1088/1748-0221/7/05/p05010

Adam, J., Bai, X., Baldini, A., Baracchini, E., Barchiesi, A., Bemporad, C., … Cecchet, G. (2010). A limit for the decay from the MEG experiment. Nuclear Physics B, 834(1-2), 1-12. doi:10.1016/j.nuclphysb.2010.03.030

Jahoda, K., Markwardt, C. B., Radeva, Y., Rots, A. H., Stark, M. J., Swank, J. H., … Zhang, W. (2006). Calibration of theRossi X‐Ray Timing ExplorerProportional Counter Array. The Astrophysical Journal Supplement Series, 163(2), 401-423. doi:10.1086/500659

Aprile, E., Curioni, A., Giboni, K. L., Kobayashi, M., Oberlack, U. G., & Zhang, S. (2008). Compton imaging of MeV gamma-rays with the Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 593(3), 414-425. doi:10.1016/j.nima.2008.05.039

Giboni, K., Aprile, E., Doke, T., Suzuki, S., Fernandes, L. M. P., Lopes, J. A. M., & Santos, J. M. F. dos. (2007). Compton Positron Emission Tomography with a Liquid Xenon Time Projection Chamber. Journal of Instrumentation, 2(10), P10001-P10001. doi:10.1088/1748-0221/2/10/p10001

Grignon, C., Barbet, J., Bardiès, M., Carlier, T., Chatal, J. F., Couturier, O., … Thers, D. (2007). Nuclear medical imaging using β+γ coincidences from 44Sc radio-nuclide with liquid xenon as detection medium. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 571(1-2), 142-145. doi:10.1016/j.nima.2006.10.048

Aprile, E., & Doke, T. (2010). Liquid xenon detectors for particle physics and astrophysics. Reviews of Modern Physics, 82(3), 2053-2097. doi:10.1103/revmodphys.82.2053

Aprile, E., Bolotnikov, A. E., Bolozdynya, A. I., & Doke, T. (2006). Noble Gas Detectors. doi:10.1002/9783527610020

Vinagre, F. L. ., & Conde, C. A. . (2000). A technique for the absolute measurement of the W-value for X-rays in counting gases. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 450(2-3), 365-372. doi:10.1016/s0168-9002(00)00310-7

Platzman, R. L. (1961). Total ionization in gases by high-energy particles: An appraisal of our understanding. The International Journal of Applied Radiation and Isotopes, 10(2-3), 116-127. doi:10.1016/0020-708x(61)90108-9

Hurst, G. S., Stewart, T. E., & Parks, J. E. (1970). Vacuum Ultraviolet Radiation and Jesse Effects in the Noble Gases. Physical Review A, 2(5), 1717-1720. doi:10.1103/physreva.2.1717

Ahlen, S. P. (1980). Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles. Reviews of Modern Physics, 52(1), 121-173. doi:10.1103/revmodphys.52.121

Nygren, D. (2009). High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 603(3), 337-348. doi:10.1016/j.nima.2009.01.222

Bolotnikov, A., & Ramsey, B. (1997). The spectroscopic properties of high-pressure xenon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 396(3), 360-370. doi:10.1016/s0168-9002(97)00784-5

Jesse, W. P., & Sadaukis, J. (1957). Absolute Energy to Produce an Ion Pair by Beta Particles fromS35. Physical Review, 107(3), 766-771. doi:10.1103/physrev.107.766

Luescher, R., Farine, J., Boehm, F., Busto, J., Gabathuler, K., Gervasio, G., … Wong, H. (1998). Search for ββ decay in 136Xe: new results from the Gotthard experiment. Physics Letters B, 434(3-4), 407-414. doi:10.1016/s0370-2693(98)00906-x

Pushkin, K. N., Hasebe, N., Tezuka, C., Kobayashi, S., Mimura, M., Hosojima, T., … Ulin, S. E. (2006). A scintillation response and an ionization yield in pure xenon and mixtures of it with methane. Instruments and Experimental Techniques, 49(4), 489-493. doi:10.1134/s0020441206040063

Parsons, A., Edberg, T. K., Sadoulet, B., Weiss, S., Wilkerson, J., Hurley, K., … Smith, G. (1990). High pressure gas scintillation drift chambers with wave-shifter fiber readout. IEEE Transactions on Nuclear Science, 37(2), 541-546. doi:10.1109/23.106674

Carmo, S. J. C. do, Borges, F. I. G. M., Santos, F. P., Dias, T. H. V. T., & Conde, C. A. N. (2008). Absolute primary scintillation yield of gaseous xenon under low drift electric fields for 5.9 keV X-rays. Journal of Instrumentation, 3(07), P07004-P07004. doi:10.1088/1748-0221/3/07/p07004

Fernandes, L. M. P., Freitas, E. D. C., Ball, M., Gómez-Cadenas, J. J., Monteiro, C. M. B., Yahlali, N., … Santos, J. M. F. dos. (2010). Primary and secondary scintillation measurements in a Xenon Gas Proportional Scintillation Counter. Journal of Instrumentation, 5(09), P09006-P09006. doi:10.1088/1748-0221/5/09/p09006

Resnati, F., Gendotti, U., Chandra, R., Curioni, A., Davatz, G., Friederich, H., … Rubbia, A. (2013). Suitability of high-pressure xenon as scintillator for gamma ray spectroscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 715, 87-91. doi:10.1016/j.nima.2013.03.008

Doke, T., Hitachi, A., Kikuchi, J., Masuda, K., Okada, H., & Shibamura, E. (2002). Absolute Scintillation Yields in Liquid Argon and Xenon for Various Particles. Japanese Journal of Applied Physics, 41(Part 1, No. 3A), 1538-1545. doi:10.1143/jjap.41.1538

Tanaka, M., Doke, T., Hitachi, A., Kato, T., Kikuchi, J., Masuda, K., … Yoshihira, E. (2001). LET dependence of scintillation yields in liquid xenon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 457(3), 454-463. doi:10.1016/s0168-9002(00)00785-3

Hitachi, A., Doke, T., & Mozumder, A. (1992). Luminescence quenching in liquid argon under charged-particle impact: Relative scintillation yield at different linear energy transfers. Physical Review B, 46(18), 11463-11470. doi:10.1103/physrevb.46.11463

Kusano, H., Ishikawa, T., Lopes, J. A. M., Miyajima, M., Shibamura, E., & Hasebe, N. (2012). Scintillation and ionization yields produced by in high-density gaseous xenon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 683, 40-45. doi:10.1016/j.nima.2012.04.074

Bogdanov, E. A., Kudryavtsev, A. A., Arslanbekov, R. R., & Kolobov, V. I. (2004). Simulation of pulsed dielectric barrier discharge xenon excimer lamp. Journal of Physics D: Applied Physics, 37(21), 2987-2995. doi:10.1088/0022-3727/37/21/008

Pushkin, K. N., Hasebe, N., Kobayashi, S., Tezuka, C., Mimura, M., Hosojima, T., … Dmitrenko, V. V. (s. f.). Scintillation yield in high pressure xenon and xenon doped with methane. IEEE Symposium Conference Record Nuclear Science 2004. doi:10.1109/nssmic.2004.1462255

Bolotnikov, A., & Ramsey, B. (1999). Studies of light and charge produced by alpha-particles in high-pressure xenon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 428(2-3), 391-402. doi:10.1016/s0168-9002(99)00173-4

Kobayashi, S., Hasebe, N., Igarashi, T., Kobayashi, M.-N., Miyachi, T., Miyajima, M., … Vlasik, K. F. (2004). Scintillation luminescence for high-pressure xenon gas. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 531(1-2), 327-332. doi:10.1016/j.nima.2004.06.024

Saito, K., Sasaki, S., Tawara, H., Sanami, T., & Shibamura, E. (2003). Simultaneous measurements of absolute numbers of electrons and scintillation photons produced by 5.49 MeV alpha particles in rare gases. IEEE Transactions on Nuclear Science, 50(6), 2452-2459. doi:10.1109/tns.2003.820615

Conti, E., DeVoe, R., Gratta, G., Koffas, T., Waldman, S., Wodin, J., … Zeldovich, O. (2003). Correlated fluctuations between luminescence and ionization in liquid xenon. Physical Review B, 68(5). doi:10.1103/physrevb.68.054201

Aprile, E., Giboni, K. L., Majewski, P., Ni, K., & Yamashita, M. (2007). Observation of anticorrelation between scintillation and ionization for MeV gamma rays in liquid xenon. Physical Review B, 76(1). doi:10.1103/physrevb.76.014115

Jaffé, G. (1913). Zur Theorie der Ionisation in Kolonnen. Annalen der Physik, 347(12), 303-344. doi:10.1002/andp.19133471205

Onsager, L. (1938). Initial Recombination of Ions. Physical Review, 54(8), 554-557. doi:10.1103/physrev.54.554

Fraser, G. W., & Mathieson, E. (1986). Monte Carlo calculation of electron transport coefficients in counting gas mixtures. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 247(3), 544-565. doi:10.1016/0168-9002(86)90417-1

Biagi, S. F. (1999). Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 421(1-2), 234-240. doi:10.1016/s0168-9002(98)01233-9

Escada, J., Dias, T. H. V. T., Santos, F. P., Rachinhas, P. J. B. M., Conde, C. A. N., & Stauffer, A. D. (2011). A Monte Carlo study of the fluctuations in Xe electroluminescence yield: pure Xe vs Xe doped with CH4or CF4and planar vs cylindrical geometries. Journal of Instrumentation, 6(08), P08006-P08006. doi:10.1088/1748-0221/6/08/p08006

Álvarez, V., Borges, F. I. G. M., Cárcel, S., Carmona, J. M., Castel, J., Catalá, J. M., … Conde, C. A. N. (2012). NEXT-100 Technical Design Report (TDR). Executive summary. Journal of Instrumentation, 7(06), T06001-T06001. doi:10.1088/1748-0221/7/06/t06001

Álvarez, V., Borges, F. I. G., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment. Journal of Instrumentation, 8(04), P04002-P04002. doi:10.1088/1748-0221/8/04/p04002

Gil, A., Díaz, J., Gómez-Cadenas, J. J., Herrero, V., Rodriguez, J., Serra, L., … Yahlali, N. (2012). Front-end electronics for accurate energy measurement of double beta decays. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 695, 407-409. doi:10.1016/j.nima.2011.11.024

Martoiu, S., Muller, H., Tarazona, A., & Toledo, J. (2013). Development of the scalable readout system for micro-pattern gas detectors and other applications. Journal of Instrumentation, 8(03), C03015-C03015. doi:10.1088/1748-0221/8/03/c03015

Argyriades, J., Arnold, R., Augier, C., Baker, J., Barabash, A. S., Bongrand, M., … Chapon, A. (2009). Measurement of the background in the NEMO 3 double beta decay experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 606(3), 449-465. doi:10.1016/j.nima.2009.04.011

Oliveira, C. A. B., Sorel, M., Martin-Albo, J., Gomez-Cadenas, J. J., Ferreira, A. L., & Veloso, J. F. C. A. (2011). Energy resolution studies for NEXT. Journal of Instrumentation, 6(05), P05007-P05007. doi:10.1088/1748-0221/6/05/p05007

Hagelaar, G. J. M., & Pitchford, L. C. (2005). Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Science and Technology, 14(4), 722-733. doi:10.1088/0963-0252/14/4/011

Cennini, P., Cittolin, S., Revol, J.-P., Rubbia, C., Tian, W.-H., Picchi, P., … Suzuki, S. (1994). Performance of a three-ton liquid argon time projection chamber. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 345(2), 230-243. doi:10.1016/0168-9002(94)90996-2

Sorensen, P. (2011). Anisotropic diffusion of electrons in liquid xenon with application to improving the sensitivity of direct dark matter searches. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 635(1), 41-43. doi:10.1016/j.nima.2011.01.089

Álvarez, V., Borges, F. I. G. M., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Near-intrinsic energy resolution for 30–662keV gamma rays in a high pressure xenon electroluminescent TPC. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 708, 101-114. doi:10.1016/j.nima.2012.12.123

Bunemann, O., Cranshaw, T. E., & Harvey, J. A. (1949). DESIGN OF GRID IONIZATION CHAMBERS. Canadian Journal of Research, 27a(5), 191-206. doi:10.1139/cjr49a-019

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem