- -

Effective electrochemical n-type doping of ZnO thin films for optoelectronic window applications

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Effective electrochemical n-type doping of ZnO thin films for optoelectronic window applications

Show full item record

Cembrero Coca, P.; Mollar García, MA.; Singh, K.; Marí Soucase, B. (2013). Effective electrochemical n-type doping of ZnO thin films for optoelectronic window applications. Journal of Solid State Electrochemistry. 2(7):Q108-Q112. doi:10.1149/2.023307jss

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/44374

Files in this item

Item Metadata

Title: Effective electrochemical n-type doping of ZnO thin films for optoelectronic window applications
Author: Cembrero Coca, Paula Mollar García, Miguel Alfonso Singh, K.C. Marí Soucase, Bernabé
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada
Issued date:
Abstract:
[EN] An effective n-type doping of ZnO thin films electrochemically synthetized was achieved by varying the chloride ion concentration in the starting electrolyte. The ratio between chloride and zinc cations was varied ...[+]
Subjects: ZnO , Electrodeposition , Doping
Copyrigths: Reserva de todos los derechos
Source:
Journal of Solid State Electrochemistry. (issn: 1432-8488 )
DOI: 10.1149/2.023307jss
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1149/2.023307jss
Project ID: info:eu-repo/grantAgreement/EC/FP7/269279/EU
Thanks:
This work was supported by Spanish Government through MCINN grant MAT2009-14625-C03-03 and European Commission through NanoCIS project FP7-PEOPLE-2010-IRSES (ref. 269279).
Type: Artículo

References

Guill�n-Santiago, A., de la L. Olvera, M., Maldonado, A., Asomoza, R., & Acosta, D. R. (2004). Electrical, structural and morphological properties of chemically sprayed F-doped ZnO films: effect of the ageing-time of the starting solution, solvent and substrate temperature. physica status solidi (a), 201(5), 952-959. doi:10.1002/pssa.200306727

Oba, F., Choi, M., Togo, A., & Tanaka, I. (2011). Point defects in ZnO: an approach from first principles. Science and Technology of Advanced Materials, 12(3), 034302. doi:10.1088/1468-6996/12/3/034302

Oh, B.-Y., Jeong, M.-C., Lee, W., & Myoung, J.-M. (2005). Properties of transparent conductive ZnO:Al films prepared by co-sputtering. Journal of Crystal Growth, 274(3-4), 453-457. doi:10.1016/j.jcrysgro.2004.10.026 [+]
Guill�n-Santiago, A., de la L. Olvera, M., Maldonado, A., Asomoza, R., & Acosta, D. R. (2004). Electrical, structural and morphological properties of chemically sprayed F-doped ZnO films: effect of the ageing-time of the starting solution, solvent and substrate temperature. physica status solidi (a), 201(5), 952-959. doi:10.1002/pssa.200306727

Oba, F., Choi, M., Togo, A., & Tanaka, I. (2011). Point defects in ZnO: an approach from first principles. Science and Technology of Advanced Materials, 12(3), 034302. doi:10.1088/1468-6996/12/3/034302

Oh, B.-Y., Jeong, M.-C., Lee, W., & Myoung, J.-M. (2005). Properties of transparent conductive ZnO:Al films prepared by co-sputtering. Journal of Crystal Growth, 274(3-4), 453-457. doi:10.1016/j.jcrysgro.2004.10.026

Manouni, A. E., Manjón, F. J., Mollar, M., Marí, B., Gómez, R., López, M. C., & Ramos-Barrado, J. R. (2006). Effect of aluminium doping on zinc oxide thin films grown by spray pyrolysis. Superlattices and Microstructures, 39(1-4), 185-192. doi:10.1016/j.spmi.2005.08.041

Kato, H., Sano, M., Miyamoto, K., & Yao, T. (2002). Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy. Journal of Crystal Growth, 237-239, 538-543. doi:10.1016/s0022-0248(01)01972-8

Ye, J. D., Gu, S. L., Zhu, S. M., Liu, S. M., Zheng, Y. D., Zhang, R., & Shi, Y. (2005). Fermi-level band filling and band-gap renormalization in Ga-doped ZnO. Applied Physics Letters, 86(19), 192111. doi:10.1063/1.1928322

Morinaga, Y., Sakuragi, K., Fujimura, N., & Ito, T. (1997). Effect of Ce doping on the growth of ZnO thin films. Journal of Crystal Growth, 174(1-4), 691-695. doi:10.1016/s0022-0248(97)00045-6

Castañeda, L., García-Valenzuela, A., Zironi, E. P., Cañetas-Ortega, J., Terrones, M., & Maldonado, A. (2006). Formation of indium-doped zinc oxide thin films using chemical spray techniques: The importance of acetic acid content in the aerosol solution and the substrate temperature for enhancing electrical transport. Thin Solid Films, 503(1-2), 212-218. doi:10.1016/j.tsf.2005.12.263

Marí, B., Sahal, M., Mollar, M. A., Cerqueira, F. M., & Samantilleke, A. P. (2012). p-Type behaviour of electrodeposited ZnO:Cu films. Journal of Solid State Electrochemistry, 16(6), 2261-2265. doi:10.1007/s10008-011-1635-x

Hu, J., & Gordon, R. G. (1991). Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells. Solar Cells, 30(1-4), 437-450. doi:10.1016/0379-6787(91)90076-2

Xu, H. Y., Liu, Y. C., Mu, R., Shao, C. L., Lu, Y. M., Shen, D. Z., & Fan, X. W. (2005). F-doping effects on electrical and optical properties of ZnO nanocrystalline films. Applied Physics Letters, 86(12), 123107. doi:10.1063/1.1884256

Cui, J. B., Soo, Y. C., Chen, T. P., & Gibson, U. J. (2008). Low-Temperature Growth and Characterization of Cl-Doped ZnO Nanowire Arrays. The Journal of Physical Chemistry C, 112(12), 4475-4479. doi:10.1021/jp710855z

Tchelidze, T., Chikoidze, E., Gorochov, O., & Galtier, P. (2007). Perspectives of chlorine doping of ZnO. Thin Solid Films, 515(24), 8744-8747. doi:10.1016/j.tsf.2007.04.003

Chikoidze, E., Nolan, M., Modreanu, M., Sallet, V., & Galtier, P. (2008). Effect of chlorine doping on electrical and optical properties of ZnO thin films. Thin Solid Films, 516(22), 8146-8149. doi:10.1016/j.tsf.2008.04.076

Rousset, J., Saucedo, E., & Lincot, D. (2009). Extrinsic Doping of Electrodeposited Zinc Oxide Films by Chlorine for Transparent Conductive Oxide Applications. Chemistry of Materials, 21(3), 534-540. doi:10.1021/cm802765c

Gordon, R. G. (2000). Criteria for Choosing Transparent Conductors. MRS Bulletin, 25(8), 52-57. doi:10.1557/mrs2000.151

Yi, G.-C., Wang, C., & Park, W. I. (2005). ZnO nanorods: synthesis, characterization and applications. Semiconductor Science and Technology, 20(4), S22-S34. doi:10.1088/0268-1242/20/4/003

Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E., & Yang, P. (2001). Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Advanced Materials, 13(2), 113-116. doi:10.1002/1521-4095(200101)13:2<113::aid-adma113>3.0.co;2-h

Wang, X., Summers, C. J., & Wang, Z. L. (2004). Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. Nano Letters, 4(3), 423-426. doi:10.1021/nl035102c

Park, W. I., Kim, D. H., Jung, S.-W., & Yi, G.-C. (2002). Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Applied Physics Letters, 80(22), 4232-4234. doi:10.1063/1.1482800

Davidová, M., Nachtigallová, D., Bulánek, R., & Nachtigall, P. (2003). Characterization of the Cu+Sites in High-Silica Zeolites Interacting with the CO Molecule:  Combined Computational and Experimental Study. The Journal of Physical Chemistry B, 107(10), 2327-2332. doi:10.1021/jp026989o

Bludský, O., Nachtigall, P., Čičmanec, P., Knotek, P., & Bulánek, R. (2005). Characterization of the Cu+ sites in MFI zeolites: combined computational and experimental study. Catalysis Today, 100(3-4), 385-389. doi:10.1016/j.cattod.2004.09.070

Lévy-Clément, C., Tena-Zaera, R., Ryan, M. A., Katty, A., & Hodes, G. (2005). CdSe-Sensitized p-CuSCN/Nanowire n-ZnO Heterojunctions. Advanced Materials, 17(12), 1512-1515. doi:10.1002/adma.200401848

Könenkamp, R., Word, R. C., & Godinez, M. (2005). Ultraviolet Electroluminescence from ZnO/Polymer Heterojunction Light-Emitting Diodes. Nano Letters, 5(10), 2005-2008. doi:10.1021/nl051501r

Mentzen, B. F., & Bergeret, G. (2007). Crystallographic Determination of the Positions of the Copper Cations in Zeolite MFI. The Journal of Physical Chemistry C, 111(34), 12512-12516. doi:10.1021/jp075452d

Izaki, M., & Omi, T. (1996). Transparent zinc oxide films prepared by electrochemical reaction. Applied Physics Letters, 68(17), 2439-2440. doi:10.1063/1.116160

Gu, Z. H. (1999). Electrochemical Deposition of ZnO Thin Films on Tin-Coated Glasses. Journal of The Electrochemical Society, 146(1), 156. doi:10.1149/1.1391579

Peulon, S., & Lincot, D. (1996). Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films. Advanced Materials, 8(2), 166-170. doi:10.1002/adma.19960080216

Elias, J., Tena-Zaera, R., & Lévy-Clément, C. (2007). Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: Role of buffer layer. Thin Solid Films, 515(24), 8553-8557. doi:10.1016/j.tsf.2007.04.027

Pauporté, T., & Lincot, D. (2001). Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition II—Mechanistic aspects. Journal of Electroanalytical Chemistry, 517(1-2), 54-62. doi:10.1016/s0022-0728(01)00674-x

Elias, J., Tena-Zaera, R., & Lévy-Clément, C. (2008). Effect of the Chemical Nature of the Anions on the Electrodeposition of ZnO Nanowire Arrays. The Journal of Physical Chemistry C, 112(15), 5736-5741. doi:10.1021/jp7120092

Marí, B., Tortosa, M., Mollar, M., Boscà, J. V., & Cui, H. N. (2010). Electrodeposited ZnCdO thin films as conducting optical layer for optoelectronic devices. Optical Materials, 32(11), 1423-1426. doi:10.1016/j.optmat.2010.05.009

Cembrero, J., Busquets-Mataix, D., Rayón, E., Pascual, M., Pérez-Puig, M. A., & Marí, B. (2013). Control parameters on the fabrication of ZnO hollow nanocolumns. Materials Science in Semiconductor Processing, 16(1), 211-216. doi:10.1016/j.mssp.2012.04.014

Cardon, F., & Gomes, W. P. (1978). On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot. Journal of Physics D: Applied Physics, 11(4), L63-L67. doi:10.1088/0022-3727/11/4/003

Windisch, C. F., & Exarhos, G. J. (2000). Mott–Schottky analysis of thin ZnO films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 18(4), 1677-1680. doi:10.1116/1.582406

Mora-Seró, I., Fabregat-Santiago, F., Denier, B., Bisquert, J., Tena-Zaera, R., Elias, J., & Lévy-Clément, C. (2006). Determination of carrier density of ZnO nanowires by electrochemical techniques. Applied Physics Letters, 89(20), 203117. doi:10.1063/1.2390667

Roth, A. P., Webb, J. B., & Williams, D. F. (1982). Band-gap narrowing in heavily defect-doped ZnO. Physical Review B, 25(12), 7836-7839. doi:10.1103/physrevb.25.7836

Kim, C. E., Moon, P., Kim, S., Myoung, J.-M., Jang, H. W., Bang, J., & Yun, I. (2010). Effect of carrier concentration on optical bandgap shift in ZnO:Ga thin films. Thin Solid Films, 518(22), 6304-6307. doi:10.1016/j.tsf.2010.03.042

Baer, W. S. (1967). Faraday Rotation in ZnO: Determination of the Electron Effective Mass. Physical Review, 154(3), 785-789. doi:10.1103/physrev.154.785

Aghamalyan, N. R., Kafadaryan, E. A., Hovsepyan, R. K., & Petrosyan, S. I. (2004). Absorption and reflection analysis of transparent conductive Ga-doped ZnO films. Semiconductor Science and Technology, 20(1), 80-85. doi:10.1088/0268-1242/20/1/013

[-]

This item appears in the following Collection(s)

Show full item record