- -

Neural network language models for off-line handwriting recognition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Neural network language models for off-line handwriting recognition

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zamora Martínez, Francisco Julián es_ES
dc.contributor.author Frinken, V. es_ES
dc.contributor.author España Boquera, Salvador es_ES
dc.contributor.author Castro-Bleda, Maria Jose es_ES
dc.contributor.author Fischer, A. es_ES
dc.contributor.author Bunke, Horst es_ES
dc.date.accessioned 2014-11-19T15:04:18Z
dc.date.available 2014-11-19T15:04:18Z
dc.date.issued 2014-04
dc.identifier.issn 0031-3203
dc.identifier.uri http://hdl.handle.net/10251/44432
dc.description.abstract [EN] Unconstrained off-line continuous handwritten text recognition is a very challenging task which has been recently addressed by different promising techniques. This work presents our latest contribution to this task, integrating neural network language models in the decoding process of three state-of-the-art systems: one based on bidirectional recurrent neural networks, another based on hybrid hidden Markov models and, finally, a combination of both. Experimental results obtained on the IAM off-line database demonstrate that consistent word error rate reductions can be achieved with neural network language models when compared with statistical N-gram language models on the three tested systems. The best word error rate, 16.1%, reported with ROVER combination of systems using neural network language models significantly outperforms current benchmark results for the IAM database. es_ES
dc.description.sponsorship The authors wish to acknowledge the anonymous reviewers for their detailed and helpful comments to the paper. We also thank Alex Graves for kindly providing us with the BLSTM Neural Network source code. This work has been supported by the European project FP7-PEOPLE-2008-IAPP: 230653, the Spanish Government under project TIN2010-18958, as well as by the Swiss National Science Foundation (Project CRSI22_125220). en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Pattern Recognition es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Handwritten text recognition (HTR) es_ES
dc.subject Language models (LMs) es_ES
dc.subject Neural networks (NNs) es_ES
dc.subject Neural network language model (NN LM) es_ES
dc.subject Bidirectional long short-term memory neural networks (BLSTM) es_ES
dc.subject Hybrid HMM/ANN models es_ES
dc.subject ROVER combination es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Neural network language models for off-line handwriting recognition es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.patcog.2013.10.020
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/230653/EU/Administrative Document Automate Optimization/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2010-18958/ES/HITITA: HERRAMIENTA INTERACTIVA PARA LA TRANSCRIPCION DE IMAGENES DE TEXTOS ANTIGUOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SNSF/Programmes/CRSI22_125220/CH/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Zamora Martínez, FJ.; Frinken, V.; España Boquera, S.; Castro-Bleda, MJ.; Fischer, A.; Bunke, H. (2014). Neural network language models for off-line handwriting recognition. Pattern Recognition. 47(4):1642-1652. https://doi.org/10.1016/j.patcog.2013.10.020 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.patcog.2013.10.020 es_ES
dc.description.upvformatpinicio 1642 es_ES
dc.description.upvformatpfin 1652 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 47 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 255333
dc.contributor.funder European Commission
dc.contributor.funder Swiss National Science Foundation
dc.contributor.funder Ministerio de Ciencia e Innovación


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem