Mostrar el registro sencillo del ítem
dc.contributor.author | Bermúdez, Vicente | es_ES |
dc.contributor.author | Serrano, J.R. | es_ES |
dc.contributor.author | Piqueras, P. | es_ES |
dc.contributor.author | García Afonso, Óscar | es_ES |
dc.date.accessioned | 2014-11-21T10:58:04Z | |
dc.date.available | 2014-11-21T10:58:04Z | |
dc.date.issued | 2013-08 | |
dc.identifier.issn | 1468-0874 | |
dc.identifier.uri | http://hdl.handle.net/10251/44537 | |
dc.description.abstract | Diesel particulate filters are the most useful technology to reduce particulate matter from the exhaust gas of internal combustion engines. Although these devices have suffered an intense development in terms of the management of filtration and regeneration, the effect of the system location on the engine performance is still a key issue that needs to be properly addressed. The present work is focused on a computational study regarding the effects of a pre-turbo aftertreatment placement under full and partial load transient operation at constant engine speed and low wall temperature along the exhaust line. The aim of the paper is to provide a comprehensive understanding of the engine response to define the guidelines of a control strategy that is able to get the standards of engine driveability during sudden accelerations under restraining thermal transient conditions governed by the aftertreatment thermal inertia. The proposed strategy overcomes the lack of temperature at the inlet of the turbine caused by the thermal transient by means of the boost and EGR control. It leads to a proper management of the power in the exhaust gas for the expansion in the turbine. | es_ES |
dc.description.sponsorship | This work was partially supported by the Universitat Politecnica de Valencia [grant number INNOVA 2011-3182]. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications (UK and US) | es_ES |
dc.relation.ispartof | International Journal of Engine Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Diesel engine | es_ES |
dc.subject | Pre-turbo aftertreatment | es_ES |
dc.subject | Transient operation | es_ES |
dc.subject | Exhaust gas recirculation control | es_ES |
dc.subject | Boost control | es_ES |
dc.subject | Gas dynamics | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Analysis of heavy-duty turbocharged diesel engine response under cold transient operation with a pre-turbo aftertreatment exhaust manifold configuration | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1468087412457670 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//INNOVA-2011-3182/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Bermúdez, V.; Serrano, J.; Piqueras, P.; García Afonso, Ó. (2013). Analysis of heavy-duty turbocharged diesel engine response under cold transient operation with a pre-turbo aftertreatment exhaust manifold configuration. International Journal of Engine Research. 14(4):341-353. https://doi.org/10.1177/1468087412457670 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1177/1468087412457670 | es_ES |
dc.description.upvformatpinicio | 341 | es_ES |
dc.description.upvformatpfin | 353 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 251866 | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Payri, F., Pastor, J. V., Pastor, J. M., & Juliá, J. E. (2006). Diesel Spray Analysis by Means of Planar Laser-Induced Exciplex Fluorescence. International Journal of Engine Research, 7(1), 77-89. doi:10.1243/146808705x27723 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., Margot, X., Marant, V., & Beauge, Y. (2004). Combustion chamber resonances in direct injection automotive diesel engines: A numerical approach. International Journal of Engine Research, 5(1), 83-91. doi:10.1243/146808704772914264 | es_ES |
dc.description.references | Serrano, J. R., Arnau, F. J., Dolz, V., & Piqueras, P. (2009). Methodology for characterisation and simulation of turbocharged diesel engines combustion during transient operation. Part 1: Data acquisition and post-processing. Applied Thermal Engineering, 29(1), 142-149. doi:10.1016/j.applthermaleng.2008.02.011 | es_ES |
dc.description.references | Serrano, J. R., Climent, H., Guardiola, C., & Piqueras, P. (2009). Methodology for characterisation and simulation of turbocharged diesel engines combustion during transient operation. Part 2: Phenomenological combustion simulation. Applied Thermal Engineering, 29(1), 150-158. doi:10.1016/j.applthermaleng.2008.02.010 | es_ES |
dc.description.references | Rakopoulos, C. D., Dimaratos, A. M., Giakoumis, E. G., & Rakopoulos, D. C. (2009). Evaluation of the effect of engine, load and turbocharger parameters on transient emissions of diesel engine. Energy Conversion and Management, 50(9), 2381-2393. doi:10.1016/j.enconman.2009.05.022 | es_ES |
dc.description.references | Rakopoulos, C. D., Dimaratos, A. M., Giakoumis, E. G., & Rakopoulos, D. C. (2010). Investigating the emissions during acceleration of a turbocharged diesel engine operating with bio-diesel or n-butanol diesel fuel blends. Energy, 35(12), 5173-5184. doi:10.1016/j.energy.2010.07.049 | es_ES |
dc.description.references | Ishikawa, N. (2012). A study on emissions improvement of a diesel engine equipped with a mechanical supercharger. International Journal of Engine Research, 13(2), 99-107. doi:10.1177/1468087411434885 | es_ES |
dc.description.references | Desantes, J. M., Luján, J. M., Pla, B., & Soler, J. A. (2012). On the combination of high-pressure and low-pressure exhaust gas recirculation loops for improved fuel economy and reduced emissions in high-speed direct-injection engines. International Journal of Engine Research, 14(1), 3-11. doi:10.1177/1468087412437623 | es_ES |
dc.description.references | Johnson, T. V. (2009). Review of diesel emissions and control. International Journal of Engine Research, 10(5), 275-285. doi:10.1243/14680874jer04009 | es_ES |
dc.description.references | Tourlonias, P., & Koltsakis, G. (2011). Model-based comparative study of Euro 6 diesel aftertreatment concepts, focusing on fuel consumption. International Journal of Engine Research, 12(3), 238-251. doi:10.1177/1468087411405104 | es_ES |
dc.description.references | Bermúdez, V., Serrano, J. R., Piqueras, P., & García-Afonso, O. (2011). Assessment by means of gas dynamic modelling of a pre-turbo diesel particulate filter configuration in a turbocharged HSDI diesel engine under full-load transient operation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225(9), 1134-1155. doi:10.1177/0954407011402278 | es_ES |
dc.description.references | Payri, F., Serrano, J. R., Piqueras, P., & García-Afonso, O. (2011). Performance Analysis of a Turbocharged Heavy Duty Diesel Engine with a Pre-turbo Diesel Particulate Filter Configuration. SAE International Journal of Engines, 4(2), 2559-2575. doi:10.4271/2011-37-0004 | es_ES |
dc.description.references | Galindo, J., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2009). Description of a Semi-Independent Time Discretization Methodology for a One-Dimensional Gas Dynamics Model. Journal of Engineering for Gas Turbines and Power, 131(3). doi:10.1115/1.2983015 | es_ES |
dc.description.references | Torregrosa, A. J., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2011). A fluid dynamic model for unsteady compressible flow in wall-flow diesel particulate filters. Energy, 36(1), 671-684. doi:10.1016/j.energy.2010.09.047 | es_ES |
dc.description.references | Desantes, J. M., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2012). Derivation of the method of characteristics for the fluid dynamic solution of flow advection along porous wall channels. Applied Mathematical Modelling, 36(7), 3134-3152. doi:10.1016/j.apm.2011.09.090 | es_ES |
dc.description.references | Galindo, J., Serrano, J. R., Piqueras, P., & García-Afonso, Ó. (2012). Heat transfer modelling in honeycomb wall-flow diesel particulate filters. Energy, 43(1), 201-213. doi:10.1016/j.energy.2012.04.044 | es_ES |