- -

Optimization of the inlet air line of an automotive turbocharger

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimization of the inlet air line of an automotive turbocharger

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serrano Cruz, José Ramón es_ES
dc.contributor.author Margot, Xandra es_ES
dc.contributor.author Tiseira Izaguirre, Andrés Omar es_ES
dc.contributor.author García-Cuevas González, Luis Miguel es_ES
dc.date.accessioned 2014-11-21T11:14:07Z
dc.date.available 2014-11-21T11:14:07Z
dc.date.issued 2013-02
dc.identifier.issn 1468-0874
dc.identifier.uri http://hdl.handle.net/10251/44538
dc.description.abstract This paper presents different aspects of air inlet behaviour near the inducer of a radial compressor and shows how the geometry can contribute to its stability and performance. Unfortunately, the space reserved for installation of an automotive turbocharger in a vehicle is constantly being reduced, so it is necessary to study the effects that elbows and abrupt changes in flow directions originate on the compressor performance. The work presented in this paper studies the effect that different 90 degrees elbows have on the compressor with respect to its ideal, straight, no-elbow configuration, in order to obtain the best possible elbow configuration. The methodology followed has been to, initially, study different geometries in computational fluid dynamics code in order to obtain the best possible configuration. Then, several 90 degrees elbows were constructed and characterized on a continuous flow test bench in order to validate the computational fluid dynamics results and to obtain optimum results. The elbows were then installed on a radial compressor and tested on a hot, continuous turbocharger test bench, where the compressor was characterized and maps were obtained with each different elbow. The results were compared with respect to the ideal, no-elbow configuration, which was taken as the base performance. After analysing the results obtained, it is possible to observe that in most of the cases, the elbows have a negative effect on the compression ratio, which tends to be reduced, especially at high rotor velocities and high air mass flow. On the other hand, the effect on the surge limit seems to be positive, as the surge line shifts to lower air mass flows, although the maximum mass flow allowed is reduced. It seems as if the compressor map shifts to the left with a reduction in compression ratio. From theoretical and experimental studies, it has been concluded that flow uniformity index and pressure loss are the most important factors affecting the performance of the compressor es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications (UK and US) es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Turbocharging compressor es_ES
dc.subject Inlet at 90 degrees es_ES
dc.subject Depression es_ES
dc.subject Surge es_ES
dc.subject Uniformity es_ES
dc.subject Pressure drop es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Optimization of the inlet air line of an automotive turbocharger es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087412449085
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics es_ES
dc.description.bibliographicCitation Serrano Cruz, JR.; Margot, X.; Tiseira Izaguirre, AO.; García-Cuevas González, LM. (2013). Optimization of the inlet air line of an automotive turbocharger. International Journal of Engine Research. 14(1):92-104. doi:10.1177/1468087412449085 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1177/1468087412449085 es_ES
dc.description.upvformatpinicio 92 es_ES
dc.description.upvformatpfin 104 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 232976
dc.description.references Soranna, F., Chow, Y.-C., Uzol, O., & Katz, J. (2005). The Effect of Inlet Guide Vanes Wake Impingement on the Flow Structure and Turbulence Around a Rotor Blade. Journal of Turbomachinery, 128(1), 82-95. doi:10.1115/1.2098755 es_ES
dc.description.references Engeda, A., Kim, Y., Aungier, R., & Direnzi, G. (2003). The Inlet Flow Structure of a Centrifugal Compressor Stage and Its Influence on the Compressor Performance. Journal of Fluids Engineering, 125(5), 779-785. doi:10.1115/1.1601255 es_ES
dc.description.references Elder, R. L., & Gill, M. E. (1985). A Discussion of the Factors Affecting Surge in Centrifugal Compressors. Journal of Engineering for Gas Turbines and Power, 107(2), 499-506. doi:10.1115/1.3239759 es_ES
dc.description.references Canova, M. (2004). Development and validation of a control-oriented library for the simulation of automotive engines. International Journal of Engine Research, 5(3), 219-228. doi:10.1243/1468087041549625 es_ES
dc.description.references Kyrtatos, N. P., Tzanos, E. I., & Papadopoulos, C. I. (2003). Diesel engine control optimization for transient operation with lean/rich switches. International Journal of Engine Research, 4(3), 219-231. doi:10.1243/146808703322223333 es_ES
dc.description.references Mattarelli, E. (2009). Virtual design of a novel two-stroke high-speed direct-injection diesel engine. International Journal of Engine Research, 10(3), 175-193. doi:10.1243/14680874jer02509 es_ES
dc.description.references Galindo, J., Serrano, J. R., Margot, X., Tiseira, A., Schorn, N., & Kindl, H. (2007). Potential of flow pre-whirl at the compressor inlet of automotive engine turbochargers to enlarge surge margin and overcome packaging limitations. International Journal of Heat and Fluid Flow, 28(3), 374-387. doi:10.1016/j.ijheatfluidflow.2006.06.002 es_ES
dc.description.references Galindo, J., Serrano, J. R., Guardiola, C., & Cervelló, C. (2006). Surge limit definition in a specific test bench for the characterization of automotive turbochargers. Experimental Thermal and Fluid Science, 30(5), 449-462. doi:10.1016/j.expthermflusci.2005.06.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem