A. Albanese, X. Barrachina, E. Mangino, and A. Peris, Distributional chaos for C0-semigroups on Banach spaces, preprint
Banks, J., Brooks, J., Cairns, G., Davis, G., & Stacey, P. (1992). On Devaney’s Definition of Chaos. The American Mathematical Monthly, 99(4), 332. doi:10.2307/2324899
Bayart, F., & Bermúdez, T. (2009). Semigroups of chaotic operators. Bulletin of the London Mathematical Society, 41(5), 823-830. doi:10.1112/blms/bdp055
[+]
A. Albanese, X. Barrachina, E. Mangino, and A. Peris, Distributional chaos for C0-semigroups on Banach spaces, preprint
Banks, J., Brooks, J., Cairns, G., Davis, G., & Stacey, P. (1992). On Devaney’s Definition of Chaos. The American Mathematical Monthly, 99(4), 332. doi:10.2307/2324899
Bayart, F., & Bermúdez, T. (2009). Semigroups of chaotic operators. Bulletin of the London Mathematical Society, 41(5), 823-830. doi:10.1112/blms/bdp055
Bayart, F., & Matheron, E. (2009). Dynamics of Linear Operators. doi:10.1017/cbo9780511581113
Bermúdez, T., Bonilla, A., Conejero, J. A., & Peris, A. (2005). Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces. Studia Mathematica, 170(1), 57-75. doi:10.4064/sm170-1-3
Bermúdez, T., Bonilla, A., Martínez-Giménez, F., & Peris, A. (2011). Li–Yorke and distributionally chaotic operators. Journal of Mathematical Analysis and Applications, 373(1), 83-93. doi:10.1016/j.jmaa.2010.06.011
Conejero, J. A., Müller, V., & Peris, A. (2007). Hypercyclic behaviour of operators in a hypercyclic <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>C</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>-semigroup. Journal of Functional Analysis, 244(1), 342-348. doi:10.1016/j.jfa.2006.12.008
Conejero, J., & Peris, A. (2009). Hypercyclic translation $C_0$-semigroups on complex sectors. Discrete and Continuous Dynamical Systems, 25(4), 1195-1208. doi:10.3934/dcds.2009.25.1195
DELAUBENFELS, R., & EMAMIRAD, H. (2001). Chaos for functions of discrete and continuous weighted shift operators. Ergodic Theory and Dynamical Systems, 21(05). doi:10.1017/s0143385701001675
DESCH, W., SCHAPPACHER, W., & WEBB, G. F. (1997). Hypercyclic and chaotic semigroups of linear
operators. Ergodic Theory and Dynamical Systems, 17(4), 793-819. doi:10.1017/s0143385797084976
Grosse-Erdmann, K.-G., & Peris Manguillot, A. (2011). Linear Chaos. Universitext. doi:10.1007/978-1-4471-2170-1
García Guirao, J. L., Kwietniak, D., Lampart, M., Oprocha, P., & Peris, A. (2009). Chaos on hyperspaces. Nonlinear Analysis: Theory, Methods & Applications, 71(1-2), 1-8. doi:10.1016/j.na.2008.10.055
Li, S. (1993). ω-Chaos and Topological Entropy. Transactions of the American Mathematical Society, 339(1), 243. doi:10.2307/2154217
Li, T.-Y., & Yorke, J. A. (1975). Period Three Implies Chaos. The American Mathematical Monthly, 82(10), 985. doi:10.2307/2318254
Martínez-Giménez, F., Oprocha, P., & Peris, A. (2009). Distributional chaos for backward shifts. Journal of Mathematical Analysis and Applications, 351(2), 607-615. doi:10.1016/j.jmaa.2008.10.049
Oprocha, P. (2009). Distributional chaos revisited. Transactions of the American Mathematical Society, 361(09), 4901-4925. doi:10.1090/s0002-9947-09-04810-7
Oprocha, P. (2009). Invariant scrambled sets and distributional chaos. Dynamical Systems, 24(1), 31-43. doi:10.1080/14689360802415114
Oprocha, P., & Štefánková, M. (2008). Specification property and distributional chaos almost everywhere. Proceedings of the American Mathematical Society, 136(11), 3931-3940. doi:10.1090/s0002-9939-08-09602-0
Schweizer, B., & Smital, J. (1994). Measures of Chaos and a Spectral Decomposition of Dynamical Systems on the Interval. Transactions of the American Mathematical Society, 344(2), 737. doi:10.2307/2154504
Smítal, J., & Štefánková, M. (2004). Distributional chaos for triangular maps. Chaos, Solitons & Fractals, 21(5), 1125-1128. doi:10.1016/j.chaos.2003.12.105
[-]