- -

Distributionally chaotic translation semigroups

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Distributionally chaotic translation semigroups

Mostrar el registro completo del ítem

Barrachina Civera, X.; Peris Manguillot, A. (2012). Distributionally chaotic translation semigroups. Journal of Difference Equations and Applications. 18(4):751-761. https://doi.org/10.1080/10236198.2011.625945

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/44601

Ficheros en el ítem

Metadatos del ítem

Título: Distributionally chaotic translation semigroups
Autor: Barrachina Civera, Xavier Peris Manguillot, Alfredo
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
We study distributional chaos for the translation C 0-semigroup on weighted L p -spaces. Some sufficient conditions for distributional chaos expressed in terms of the weight are given. Moreover, we establish a complete ...[+]
Palabras clave: Backward shift operator , C 0-semigroups , Distributional chaos , Translation C 0-semigroup , Operators
Derechos de uso: Cerrado
Fuente:
Journal of Difference Equations and Applications. (issn: 1023-6198 ) (eissn: 1563-5120 )
DOI: 10.1080/10236198.2011.625945
Editorial:
Taylor & Francis
Versión del editor: http://dx.doi.org/10.1080/10236198.2011.625945
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/
info:eu-repo/grantAgreement/GVA//GV%2F2010%2F091/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2008%2F10/
info:eu-repo/grantAgreement/UPV//FPI-UPV 2009-04/
Descripción: "This is an Accepted Manuscript of an article published by Taylor & Francis Group in [Journal of Difference Equations and Applications] on [04-11-2011], available online at: http://www.tandfonline.com/10.1080/10236198.2011.625945
Agradecimientos:
This work is supported in part by MEC and FEDER, Project MTM2010-14909, by Generalitat Valenciana, Projects PROMETEO/2008/101 and GV/2010/091, and by Universitat Politecnica de Valencia, Project PAID-06-09-2932. The first ...[+]
Tipo: Artículo

References

A. Albanese, X. Barrachina, E. Mangino, and A. Peris, Distributional chaos for C0-semigroups on Banach spaces, preprint

Banks, J., Brooks, J., Cairns, G., Davis, G., & Stacey, P. (1992). On Devaney’s Definition of Chaos. The American Mathematical Monthly, 99(4), 332. doi:10.2307/2324899

Bayart, F., & Bermúdez, T. (2009). Semigroups of chaotic operators. Bulletin of the London Mathematical Society, 41(5), 823-830. doi:10.1112/blms/bdp055 [+]
A. Albanese, X. Barrachina, E. Mangino, and A. Peris, Distributional chaos for C0-semigroups on Banach spaces, preprint

Banks, J., Brooks, J., Cairns, G., Davis, G., & Stacey, P. (1992). On Devaney’s Definition of Chaos. The American Mathematical Monthly, 99(4), 332. doi:10.2307/2324899

Bayart, F., & Bermúdez, T. (2009). Semigroups of chaotic operators. Bulletin of the London Mathematical Society, 41(5), 823-830. doi:10.1112/blms/bdp055

Bayart, F., & Matheron, E. (2009). Dynamics of Linear Operators. doi:10.1017/cbo9780511581113

Bermúdez, T., Bonilla, A., Conejero, J. A., & Peris, A. (2005). Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces. Studia Mathematica, 170(1), 57-75. doi:10.4064/sm170-1-3

Bermúdez, T., Bonilla, A., Martínez-Giménez, F., & Peris, A. (2011). Li–Yorke and distributionally chaotic operators. Journal of Mathematical Analysis and Applications, 373(1), 83-93. doi:10.1016/j.jmaa.2010.06.011

Conejero, J. A., Müller, V., & Peris, A. (2007). Hypercyclic behaviour of operators in a hypercyclic <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>C</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>-semigroup. Journal of Functional Analysis, 244(1), 342-348. doi:10.1016/j.jfa.2006.12.008

Conejero, J., & Peris, A. (2009). Hypercyclic translation $C_0$-semigroups on complex sectors. Discrete and Continuous Dynamical Systems, 25(4), 1195-1208. doi:10.3934/dcds.2009.25.1195

DELAUBENFELS, R., & EMAMIRAD, H. (2001). Chaos for functions of discrete and continuous weighted shift operators. Ergodic Theory and Dynamical Systems, 21(05). doi:10.1017/s0143385701001675

DESCH, W., SCHAPPACHER, W., & WEBB, G. F. (1997). Hypercyclic and chaotic semigroups of linear operators. Ergodic Theory and Dynamical Systems, 17(4), 793-819. doi:10.1017/s0143385797084976

Grosse-Erdmann, K.-G., & Peris Manguillot, A. (2011). Linear Chaos. Universitext. doi:10.1007/978-1-4471-2170-1

García Guirao, J. L., Kwietniak, D., Lampart, M., Oprocha, P., & Peris, A. (2009). Chaos on hyperspaces. Nonlinear Analysis: Theory, Methods & Applications, 71(1-2), 1-8. doi:10.1016/j.na.2008.10.055

Li, S. (1993). ω-Chaos and Topological Entropy. Transactions of the American Mathematical Society, 339(1), 243. doi:10.2307/2154217

Li, T.-Y., & Yorke, J. A. (1975). Period Three Implies Chaos. The American Mathematical Monthly, 82(10), 985. doi:10.2307/2318254

Martínez-Giménez, F., Oprocha, P., & Peris, A. (2009). Distributional chaos for backward shifts. Journal of Mathematical Analysis and Applications, 351(2), 607-615. doi:10.1016/j.jmaa.2008.10.049

Oprocha, P. (2009). Distributional chaos revisited. Transactions of the American Mathematical Society, 361(09), 4901-4925. doi:10.1090/s0002-9947-09-04810-7

Oprocha, P. (2009). Invariant scrambled sets and distributional chaos. Dynamical Systems, 24(1), 31-43. doi:10.1080/14689360802415114

Oprocha, P., & Štefánková, M. (2008). Specification property and distributional chaos almost everywhere. Proceedings of the American Mathematical Society, 136(11), 3931-3940. doi:10.1090/s0002-9939-08-09602-0

Schweizer, B., & Smital, J. (1994). Measures of Chaos and a Spectral Decomposition of Dynamical Systems on the Interval. Transactions of the American Mathematical Society, 344(2), 737. doi:10.2307/2154504

Smítal, J., & Štefánková, M. (2004). Distributional chaos for triangular maps. Chaos, Solitons & Fractals, 21(5), 1125-1128. doi:10.1016/j.chaos.2003.12.105

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem