- -

Distributionally chaotic translation semigroups

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Distributionally chaotic translation semigroups

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barrachina Civera, Xavier es_ES
dc.contributor.author Peris Manguillot, Alfredo es_ES
dc.date.accessioned 2014-11-24T10:10:43Z
dc.date.available 2014-11-24T10:10:43Z
dc.date.issued 2012
dc.identifier.issn 1023-6198
dc.identifier.uri http://hdl.handle.net/10251/44601
dc.description "This is an Accepted Manuscript of an article published by Taylor & Francis Group in [Journal of Difference Equations and Applications] on [04-11-2011], available online at: http://www.tandfonline.com/10.1080/10236198.2011.625945 es_ES
dc.description.abstract We study distributional chaos for the translation C 0-semigroup on weighted L p -spaces. Some sufficient conditions for distributional chaos expressed in terms of the weight are given. Moreover, we establish a complete analogy between the study on distributional chaos for the translation C 0-semigroup and the corresponding one for backward shifts on weighted sequence spaces. es_ES
dc.description.sponsorship This work is supported in part by MEC and FEDER, Project MTM2010-14909, by Generalitat Valenciana, Projects PROMETEO/2008/101 and GV/2010/091, and by Universitat Politecnica de Valencia, Project PAID-06-09-2932. The first author also wants to acknowledge the support of the grant FPI-UPV 2009-04 from Programa de Ayudas de Investigacion y Desarrollo de la Universitat Politecnica de Valencia. We would like to thank A. Conejero and T. Kalmes for interesting discussions during the preparation of the paper, and the referee for the suggestions. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Journal of Difference Equations and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Backward shift operator es_ES
dc.subject C 0-semigroups es_ES
dc.subject Distributional chaos es_ES
dc.subject Translation C 0-semigroup es_ES
dc.subject Operators es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Distributionally chaotic translation semigroups es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/10236198.2011.625945
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2010%2F091/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2008%2F10/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-UPV 2009-04/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Barrachina Civera, X.; Peris Manguillot, A. (2012). Distributionally chaotic translation semigroups. Journal of Difference Equations and Applications. 18(4):751-761. https://doi.org/10.1080/10236198.2011.625945 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/10236198.2011.625945 es_ES
dc.description.upvformatpinicio 751 es_ES
dc.description.upvformatpfin 761 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 235741
dc.identifier.eissn 1563-5120
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references A. Albanese, X. Barrachina, E. Mangino, and A. Peris, Distributional chaos for C0-semigroups on Banach spaces, preprint es_ES
dc.description.references Banks, J., Brooks, J., Cairns, G., Davis, G., & Stacey, P. (1992). On Devaney’s Definition of Chaos. The American Mathematical Monthly, 99(4), 332. doi:10.2307/2324899 es_ES
dc.description.references Bayart, F., & Bermúdez, T. (2009). Semigroups of chaotic operators. Bulletin of the London Mathematical Society, 41(5), 823-830. doi:10.1112/blms/bdp055 es_ES
dc.description.references Bayart, F., & Matheron, E. (2009). Dynamics of Linear Operators. doi:10.1017/cbo9780511581113 es_ES
dc.description.references Bermúdez, T., Bonilla, A., Conejero, J. A., & Peris, A. (2005). Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces. Studia Mathematica, 170(1), 57-75. doi:10.4064/sm170-1-3 es_ES
dc.description.references Bermúdez, T., Bonilla, A., Martínez-Giménez, F., & Peris, A. (2011). Li–Yorke and distributionally chaotic operators. Journal of Mathematical Analysis and Applications, 373(1), 83-93. doi:10.1016/j.jmaa.2010.06.011 es_ES
dc.description.references Conejero, J. A., Müller, V., & Peris, A. (2007). Hypercyclic behaviour of operators in a hypercyclic <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>C</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>-semigroup. Journal of Functional Analysis, 244(1), 342-348. doi:10.1016/j.jfa.2006.12.008 es_ES
dc.description.references Conejero, J., & Peris, A. (2009). Hypercyclic translation $C_0$-semigroups on complex sectors. Discrete and Continuous Dynamical Systems, 25(4), 1195-1208. doi:10.3934/dcds.2009.25.1195 es_ES
dc.description.references DELAUBENFELS, R., & EMAMIRAD, H. (2001). Chaos for functions of discrete and continuous weighted shift operators. Ergodic Theory and Dynamical Systems, 21(05). doi:10.1017/s0143385701001675 es_ES
dc.description.references DESCH, W., SCHAPPACHER, W., & WEBB, G. F. (1997). Hypercyclic and chaotic semigroups of linear operators. Ergodic Theory and Dynamical Systems, 17(4), 793-819. doi:10.1017/s0143385797084976 es_ES
dc.description.references Grosse-Erdmann, K.-G., & Peris Manguillot, A. (2011). Linear Chaos. Universitext. doi:10.1007/978-1-4471-2170-1 es_ES
dc.description.references García Guirao, J. L., Kwietniak, D., Lampart, M., Oprocha, P., & Peris, A. (2009). Chaos on hyperspaces. Nonlinear Analysis: Theory, Methods & Applications, 71(1-2), 1-8. doi:10.1016/j.na.2008.10.055 es_ES
dc.description.references Li, S. (1993). ω-Chaos and Topological Entropy. Transactions of the American Mathematical Society, 339(1), 243. doi:10.2307/2154217 es_ES
dc.description.references Li, T.-Y., & Yorke, J. A. (1975). Period Three Implies Chaos. The American Mathematical Monthly, 82(10), 985. doi:10.2307/2318254 es_ES
dc.description.references Martínez-Giménez, F., Oprocha, P., & Peris, A. (2009). Distributional chaos for backward shifts. Journal of Mathematical Analysis and Applications, 351(2), 607-615. doi:10.1016/j.jmaa.2008.10.049 es_ES
dc.description.references Oprocha, P. (2009). Distributional chaos revisited. Transactions of the American Mathematical Society, 361(09), 4901-4925. doi:10.1090/s0002-9947-09-04810-7 es_ES
dc.description.references Oprocha, P. (2009). Invariant scrambled sets and distributional chaos. Dynamical Systems, 24(1), 31-43. doi:10.1080/14689360802415114 es_ES
dc.description.references Oprocha, P., & Štefánková, M. (2008). Specification property and distributional chaos almost everywhere. Proceedings of the American Mathematical Society, 136(11), 3931-3940. doi:10.1090/s0002-9939-08-09602-0 es_ES
dc.description.references Schweizer, B., & Smital, J. (1994). Measures of Chaos and a Spectral Decomposition of Dynamical Systems on the Interval. Transactions of the American Mathematical Society, 344(2), 737. doi:10.2307/2154504 es_ES
dc.description.references Smítal, J., & Štefánková, M. (2004). Distributional chaos for triangular maps. Chaos, Solitons & Fractals, 21(5), 1125-1128. doi:10.1016/j.chaos.2003.12.105 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem