Mostrar el registro sencillo del ítem
dc.contributor.author | Barrachina Civera, Xavier | es_ES |
dc.contributor.author | Peris Manguillot, Alfredo | es_ES |
dc.date.accessioned | 2014-11-24T10:10:43Z | |
dc.date.available | 2014-11-24T10:10:43Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1023-6198 | |
dc.identifier.uri | http://hdl.handle.net/10251/44601 | |
dc.description | "This is an Accepted Manuscript of an article published by Taylor & Francis Group in [Journal of Difference Equations and Applications] on [04-11-2011], available online at: http://www.tandfonline.com/10.1080/10236198.2011.625945 | es_ES |
dc.description.abstract | We study distributional chaos for the translation C 0-semigroup on weighted L p -spaces. Some sufficient conditions for distributional chaos expressed in terms of the weight are given. Moreover, we establish a complete analogy between the study on distributional chaos for the translation C 0-semigroup and the corresponding one for backward shifts on weighted sequence spaces. | es_ES |
dc.description.sponsorship | This work is supported in part by MEC and FEDER, Project MTM2010-14909, by Generalitat Valenciana, Projects PROMETEO/2008/101 and GV/2010/091, and by Universitat Politecnica de Valencia, Project PAID-06-09-2932. The first author also wants to acknowledge the support of the grant FPI-UPV 2009-04 from Programa de Ayudas de Investigacion y Desarrollo de la Universitat Politecnica de Valencia. We would like to thank A. Conejero and T. Kalmes for interesting discussions during the preparation of the paper, and the referee for the suggestions. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Journal of Difference Equations and Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Backward shift operator | es_ES |
dc.subject | C 0-semigroups | es_ES |
dc.subject | Distributional chaos | es_ES |
dc.subject | Translation C 0-semigroup | es_ES |
dc.subject | Operators | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Distributionally chaotic translation semigroups | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/10236198.2011.625945 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2010%2F091/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2008%2F10/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//FPI-UPV 2009-04/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Barrachina Civera, X.; Peris Manguillot, A. (2012). Distributionally chaotic translation semigroups. Journal of Difference Equations and Applications. 18(4):751-761. https://doi.org/10.1080/10236198.2011.625945 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/10236198.2011.625945 | es_ES |
dc.description.upvformatpinicio | 751 | es_ES |
dc.description.upvformatpfin | 761 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 235741 | |
dc.identifier.eissn | 1563-5120 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | A. Albanese, X. Barrachina, E. Mangino, and A. Peris, Distributional chaos for C0-semigroups on Banach spaces, preprint | es_ES |
dc.description.references | Banks, J., Brooks, J., Cairns, G., Davis, G., & Stacey, P. (1992). On Devaney’s Definition of Chaos. The American Mathematical Monthly, 99(4), 332. doi:10.2307/2324899 | es_ES |
dc.description.references | Bayart, F., & Bermúdez, T. (2009). Semigroups of chaotic operators. Bulletin of the London Mathematical Society, 41(5), 823-830. doi:10.1112/blms/bdp055 | es_ES |
dc.description.references | Bayart, F., & Matheron, E. (2009). Dynamics of Linear Operators. doi:10.1017/cbo9780511581113 | es_ES |
dc.description.references | Bermúdez, T., Bonilla, A., Conejero, J. A., & Peris, A. (2005). Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces. Studia Mathematica, 170(1), 57-75. doi:10.4064/sm170-1-3 | es_ES |
dc.description.references | Bermúdez, T., Bonilla, A., Martínez-Giménez, F., & Peris, A. (2011). Li–Yorke and distributionally chaotic operators. Journal of Mathematical Analysis and Applications, 373(1), 83-93. doi:10.1016/j.jmaa.2010.06.011 | es_ES |
dc.description.references | Conejero, J. A., Müller, V., & Peris, A. (2007). Hypercyclic behaviour of operators in a hypercyclic <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>C</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>-semigroup. Journal of Functional Analysis, 244(1), 342-348. doi:10.1016/j.jfa.2006.12.008 | es_ES |
dc.description.references | Conejero, J., & Peris, A. (2009). Hypercyclic translation $C_0$-semigroups on complex sectors. Discrete and Continuous Dynamical Systems, 25(4), 1195-1208. doi:10.3934/dcds.2009.25.1195 | es_ES |
dc.description.references | DELAUBENFELS, R., & EMAMIRAD, H. (2001). Chaos for functions of discrete and continuous weighted shift operators. Ergodic Theory and Dynamical Systems, 21(05). doi:10.1017/s0143385701001675 | es_ES |
dc.description.references | DESCH, W., SCHAPPACHER, W., & WEBB, G. F. (1997). Hypercyclic and chaotic semigroups of linear operators. Ergodic Theory and Dynamical Systems, 17(4), 793-819. doi:10.1017/s0143385797084976 | es_ES |
dc.description.references | Grosse-Erdmann, K.-G., & Peris Manguillot, A. (2011). Linear Chaos. Universitext. doi:10.1007/978-1-4471-2170-1 | es_ES |
dc.description.references | García Guirao, J. L., Kwietniak, D., Lampart, M., Oprocha, P., & Peris, A. (2009). Chaos on hyperspaces. Nonlinear Analysis: Theory, Methods & Applications, 71(1-2), 1-8. doi:10.1016/j.na.2008.10.055 | es_ES |
dc.description.references | Li, S. (1993). ω-Chaos and Topological Entropy. Transactions of the American Mathematical Society, 339(1), 243. doi:10.2307/2154217 | es_ES |
dc.description.references | Li, T.-Y., & Yorke, J. A. (1975). Period Three Implies Chaos. The American Mathematical Monthly, 82(10), 985. doi:10.2307/2318254 | es_ES |
dc.description.references | Martínez-Giménez, F., Oprocha, P., & Peris, A. (2009). Distributional chaos for backward shifts. Journal of Mathematical Analysis and Applications, 351(2), 607-615. doi:10.1016/j.jmaa.2008.10.049 | es_ES |
dc.description.references | Oprocha, P. (2009). Distributional chaos revisited. Transactions of the American Mathematical Society, 361(09), 4901-4925. doi:10.1090/s0002-9947-09-04810-7 | es_ES |
dc.description.references | Oprocha, P. (2009). Invariant scrambled sets and distributional chaos. Dynamical Systems, 24(1), 31-43. doi:10.1080/14689360802415114 | es_ES |
dc.description.references | Oprocha, P., & Štefánková, M. (2008). Specification property and distributional chaos almost everywhere. Proceedings of the American Mathematical Society, 136(11), 3931-3940. doi:10.1090/s0002-9939-08-09602-0 | es_ES |
dc.description.references | Schweizer, B., & Smital, J. (1994). Measures of Chaos and a Spectral Decomposition of Dynamical Systems on the Interval. Transactions of the American Mathematical Society, 344(2), 737. doi:10.2307/2154504 | es_ES |
dc.description.references | Smítal, J., & Štefánková, M. (2004). Distributional chaos for triangular maps. Chaos, Solitons & Fractals, 21(5), 1125-1128. doi:10.1016/j.chaos.2003.12.105 | es_ES |