- -

Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients

Show full item record

Bader, P.; Blanes Zamora, S.; Casas, F. (2013). Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients. Journal of Chemical Physics. 139(12):124117-124117. https://doi.org/10.1063/1.4821126

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/44813

Files in this item

Item Metadata

Title: Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients
Author: Bader, Philipp Blanes Zamora, Sergio Casas, Fernando
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
The Schrodinger eigenvalue problem is solved with the imaginary time propagation technique. The separability of the Hamiltonian makes the problem suitable for the application of splitting methods. High order fractional ...[+]
Subjects: Symplectic integrators , Ecuations , Schemes , Systems , Steps
Copyrigths: Reserva de todos los derechos
Source:
Journal of Chemical Physics. (issn: 0021-9606 )
DOI: 10.1063/1.4821126
Publisher:
American Institute of Physics (AIP)
Publisher version: http://dx.doi.org/10.1063/1.4821126
Project ID:
info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03/
info:eu-repo/grantAgreement/QNRF//NPRP 5-674-1-114/
info:eu-repo/grantAgreement/ME//AP2009-1892/ES/AP2009-1892/
Thanks:
We wish to acknowledge Ander Murua and Joseba Makazaga for providing the methods T86<INF>9</INF> and V86<INF>9</INF>. This work has been partially supported by Ministerio de Ciencia e Innovacion (Spain) under Project ...[+]
Type: Artículo

References

Chin, S. A., Janecek, S., & Krotscheck, E. (2009). Any order imaginary time propagation method for solving the Schrödinger equation. Chemical Physics Letters, 470(4-6), 342-346. doi:10.1016/j.cplett.2009.01.068

Janecek, S., & Krotscheck, E. (2008). A fast and simple program for solving local Schrödinger equations in two and three dimensions. Computer Physics Communications, 178(11), 835-842. doi:10.1016/j.cpc.2008.01.035

Roy, A. K., Gupta, N., & Deb, B. M. (2001). Time-dependent quantum-mechanical calculation of ground and excited states of anharmonic and double-well oscillators. Physical Review A, 65(1). doi:10.1103/physreva.65.012109 [+]
Chin, S. A., Janecek, S., & Krotscheck, E. (2009). Any order imaginary time propagation method for solving the Schrödinger equation. Chemical Physics Letters, 470(4-6), 342-346. doi:10.1016/j.cplett.2009.01.068

Janecek, S., & Krotscheck, E. (2008). A fast and simple program for solving local Schrödinger equations in two and three dimensions. Computer Physics Communications, 178(11), 835-842. doi:10.1016/j.cpc.2008.01.035

Roy, A. K., Gupta, N., & Deb, B. M. (2001). Time-dependent quantum-mechanical calculation of ground and excited states of anharmonic and double-well oscillators. Physical Review A, 65(1). doi:10.1103/physreva.65.012109

Auer, J., Krotscheck, E., & Chin, S. A. (2001). A fourth-order real-space algorithm for solving local Schrödinger equations. The Journal of Chemical Physics, 115(15), 6841-6846. doi:10.1063/1.1404142

Lehtovaara, L., Toivanen, J., & Eloranta, J. (2007). Solution of time-independent Schrödinger equation by the imaginary time propagation method. Journal of Computational Physics, 221(1), 148-157. doi:10.1016/j.jcp.2006.06.006

Trefethen, L. N., & Bau, D. (1997). Numerical Linear Algebra. doi:10.1137/1.9780898719574

Aichinger, M., & Krotscheck, E. (2005). A fast configuration space method for solving local Kohn–Sham equations. Computational Materials Science, 34(2), 188-212. doi:10.1016/j.commatsci.2004.11.002

SHENG, Q. (1989). Solving Linear Partial Differential Equations by Exponential Splitting. IMA Journal of Numerical Analysis, 9(2), 199-212. doi:10.1093/imanum/9.2.199

Suzuki, M. (1991). General theory of fractal path integrals with applications to many‐body theories and statistical physics. Journal of Mathematical Physics, 32(2), 400-407. doi:10.1063/1.529425

Chin, S. A. (1997). Symplectic integrators from composite operator factorizations. Physics Letters A, 226(6), 344-348. doi:10.1016/s0375-9601(97)00003-0

Omelyan, I. P., Mryglod, I. M., & Folk, R. (2002). Construction of high-order force-gradient algorithms for integration of motion in classical and quantum systems. Physical Review E, 66(2). doi:10.1103/physreve.66.026701

Chin, S. A., & Chen, C. R. (2002). Gradient symplectic algorithms for solving the Schrödinger equation with time-dependent potentials. The Journal of Chemical Physics, 117(4), 1409-1415. doi:10.1063/1.1485725

Goldman, D., & Kaper, T. J. (1996). Nth-Order Operator Splitting Schemes and Nonreversible Systems. SIAM Journal on Numerical Analysis, 33(1), 349-367. doi:10.1137/0733018

Blanes, S., & Casas, F. (2005). On the necessity of negative coefficients for operator splitting schemes of order higher than two. Applied Numerical Mathematics, 54(1), 23-37. doi:10.1016/j.apnum.2004.10.005

E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed. (Springer, Berlin, 2006), p. 81.

P.V. Koseleff, Ph.D. thesis, École Polytechnique, 1993.

Chin, S. A. (2005). Structure of positive decompositions of exponential operators. Physical Review E, 71(1). doi:10.1103/physreve.71.016703

Chin, S. A., & Krotscheck, E. (2005). Fourth-order algorithms for solving the imaginary-time Gross-Pitaevskii equation in a rotating anisotropic trap. Physical Review E, 72(3). doi:10.1103/physreve.72.036705

Bader, P., & Blanes, S. (2011). Fourier methods for the perturbed harmonic oscillator in linear and nonlinear Schrödinger equations. Physical Review E, 83(4). doi:10.1103/physreve.83.046711

Chambers, J. E. (2003). Symplectic Integrators with Complex Time Steps. The Astronomical Journal, 126(2), 1119-1126. doi:10.1086/376844

Bandrauk, A. D., Dehghanian, E., & Lu, H. (2006). Complex integration steps in decomposition of quantum exponential evolution operators. Chemical Physics Letters, 419(4-6), 346-350. doi:10.1016/j.cplett.2005.12.006

BANDRAUK, A. D., & LU, H. (2013). EXPONENTIAL PROPAGATORS (INTEGRATORS) FOR THE TIME-DEPENDENT SCHRÖDINGER EQUATION. Journal of Theoretical and Computational Chemistry, 12(06), 1340001. doi:10.1142/s0219633613400014

Castella, F., Chartier, P., Descombes, S., & Vilmart, G. (2009). Splitting methods with complex times for parabolic equations. BIT Numerical Mathematics, 49(3), 487-508. doi:10.1007/s10543-009-0235-y

Hansen, E., & Ostermann, A. (2009). High order splitting methods for analytic semigroups exist. BIT Numerical Mathematics, 49(3), 527-542. doi:10.1007/s10543-009-0236-x

Blanes, S., Casas, F., Chartier, P., & Murua, A. (2012). Optimized high-order splitting methods for some classes of parabolic equations. Mathematics of Computation, 82(283), 1559-1576. doi:10.1090/s0025-5718-2012-02657-3

Blanes, S., Casas, F., & Ros, J. (2000). Celestial Mechanics and Dynamical Astronomy, 77(1), 17-36. doi:10.1023/a:1008311025472

McLachlan, R. I. (1995). Composition methods in the presence of small parameters. BIT Numerical Mathematics, 35(2), 258-268. doi:10.1007/bf01737165

Laskar, J., & Robutel, P. (2001). Celestial Mechanics and Dynamical Astronomy, 80(1), 39-62. doi:10.1023/a:1012098603882

Sakkos, K., Casulleras, J., & Boronat, J. (2009). High order Chin actions in path integral Monte Carlo. The Journal of Chemical Physics, 130(20), 204109. doi:10.1063/1.3143522

Blanes, S., Casas, F., & Ros, J. (1999). Celestial Mechanics and Dynamical Astronomy, 75(2), 149-161. doi:10.1023/a:1008364504014

Blanes, S., Casas, F., Farrés, A., Laskar, J., Makazaga, J., & Murua, A. (2013). New families of symplectic splitting methods for numerical integration in dynamical astronomy. Applied Numerical Mathematics, 68, 58-72. doi:10.1016/j.apnum.2013.01.003

Blanes, S., Casas, F., & Ros, J. (2001). High-order Runge–Kutta–Nyström geometric methods with processing. Applied Numerical Mathematics, 39(3-4), 245-259. doi:10.1016/s0168-9274(00)00035-0

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record