- -

Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bader, Philipp es_ES
dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.author Casas, Fernando es_ES
dc.date.accessioned 2014-11-25T11:46:08Z
dc.date.available 2014-11-25T11:46:08Z
dc.date.issued 2013-09-28
dc.identifier.issn 0021-9606
dc.identifier.uri http://hdl.handle.net/10251/44813
dc.description.abstract The Schrodinger eigenvalue problem is solved with the imaginary time propagation technique. The separability of the Hamiltonian makes the problem suitable for the application of splitting methods. High order fractional time steps of order greater than two necessarily have negative steps and cannot be used for this class of diffusive problems. However, there exist methods which use fractional complex time steps with positive real parts which can be used with only a moderate increase in the computational cost. We analyze the performance of this class of schemes and propose new methods which outperform the existing ones in most cases. On the other hand, if the gradient of the potential is available, methods up to fourth order with real and positive coefficients exist. We also explore this case and propose new methods as well as sixth-order methods with complex coefficients. In particular, highly optimized sixth-order schemes for near integrable systems using positive real part complex coefficients with and without modified potentials are presented. A time-stepping variable order algorithm is proposed and numerical results show the enhanced efficiency of the new methods. es_ES
dc.description.sponsorship We wish to acknowledge Ander Murua and Joseba Makazaga for providing the methods T86<INF>9</INF> and V86<INF>9</INF>. This work has been partially supported by Ministerio de Ciencia e Innovacion (Spain) under Project MTM2010-18246-C03 and by a grant from the Qatar National Research Fund (NPRP) #NPRP 5-674-1-114. P.B. also acknowledges the support through the FPU fellowship AP2009-1892. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Journal of Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Symplectic integrators es_ES
dc.subject Ecuations es_ES
dc.subject Schemes es_ES
dc.subject Systems es_ES
dc.subject Steps es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4821126
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/QNRF//NPRP 5-674-1-114/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ME//AP2009-1892/ES/AP2009-1892/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bader, P.; Blanes Zamora, S.; Casas, F. (2013). Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients. Journal of Chemical Physics. 139(12):124117-124117. https://doi.org/10.1063/1.4821126 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4821126 es_ES
dc.description.upvformatpinicio 124117 es_ES
dc.description.upvformatpfin 124117 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 139 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 255335
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Educación es_ES
dc.contributor.funder Qatar National Research Fund es_ES
dc.description.references Chin, S. A., Janecek, S., & Krotscheck, E. (2009). Any order imaginary time propagation method for solving the Schrödinger equation. Chemical Physics Letters, 470(4-6), 342-346. doi:10.1016/j.cplett.2009.01.068 es_ES
dc.description.references Janecek, S., & Krotscheck, E. (2008). A fast and simple program for solving local Schrödinger equations in two and three dimensions. Computer Physics Communications, 178(11), 835-842. doi:10.1016/j.cpc.2008.01.035 es_ES
dc.description.references Roy, A. K., Gupta, N., & Deb, B. M. (2001). Time-dependent quantum-mechanical calculation of ground and excited states of anharmonic and double-well oscillators. Physical Review A, 65(1). doi:10.1103/physreva.65.012109 es_ES
dc.description.references Auer, J., Krotscheck, E., & Chin, S. A. (2001). A fourth-order real-space algorithm for solving local Schrödinger equations. The Journal of Chemical Physics, 115(15), 6841-6846. doi:10.1063/1.1404142 es_ES
dc.description.references Lehtovaara, L., Toivanen, J., & Eloranta, J. (2007). Solution of time-independent Schrödinger equation by the imaginary time propagation method. Journal of Computational Physics, 221(1), 148-157. doi:10.1016/j.jcp.2006.06.006 es_ES
dc.description.references Trefethen, L. N., & Bau, D. (1997). Numerical Linear Algebra. doi:10.1137/1.9780898719574 es_ES
dc.description.references Aichinger, M., & Krotscheck, E. (2005). A fast configuration space method for solving local Kohn–Sham equations. Computational Materials Science, 34(2), 188-212. doi:10.1016/j.commatsci.2004.11.002 es_ES
dc.description.references SHENG, Q. (1989). Solving Linear Partial Differential Equations by Exponential Splitting. IMA Journal of Numerical Analysis, 9(2), 199-212. doi:10.1093/imanum/9.2.199 es_ES
dc.description.references Suzuki, M. (1991). General theory of fractal path integrals with applications to many‐body theories and statistical physics. Journal of Mathematical Physics, 32(2), 400-407. doi:10.1063/1.529425 es_ES
dc.description.references Chin, S. A. (1997). Symplectic integrators from composite operator factorizations. Physics Letters A, 226(6), 344-348. doi:10.1016/s0375-9601(97)00003-0 es_ES
dc.description.references Omelyan, I. P., Mryglod, I. M., & Folk, R. (2002). Construction of high-order force-gradient algorithms for integration of motion in classical and quantum systems. Physical Review E, 66(2). doi:10.1103/physreve.66.026701 es_ES
dc.description.references Chin, S. A., & Chen, C. R. (2002). Gradient symplectic algorithms for solving the Schrödinger equation with time-dependent potentials. The Journal of Chemical Physics, 117(4), 1409-1415. doi:10.1063/1.1485725 es_ES
dc.description.references Goldman, D., & Kaper, T. J. (1996). Nth-Order Operator Splitting Schemes and Nonreversible Systems. SIAM Journal on Numerical Analysis, 33(1), 349-367. doi:10.1137/0733018 es_ES
dc.description.references Blanes, S., & Casas, F. (2005). On the necessity of negative coefficients for operator splitting schemes of order higher than two. Applied Numerical Mathematics, 54(1), 23-37. doi:10.1016/j.apnum.2004.10.005 es_ES
dc.description.references E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed. (Springer, Berlin, 2006), p. 81. es_ES
dc.description.references P.V. Koseleff, Ph.D. thesis, École Polytechnique, 1993. es_ES
dc.description.references Chin, S. A. (2005). Structure of positive decompositions of exponential operators. Physical Review E, 71(1). doi:10.1103/physreve.71.016703 es_ES
dc.description.references Chin, S. A., & Krotscheck, E. (2005). Fourth-order algorithms for solving the imaginary-time Gross-Pitaevskii equation in a rotating anisotropic trap. Physical Review E, 72(3). doi:10.1103/physreve.72.036705 es_ES
dc.description.references Bader, P., & Blanes, S. (2011). Fourier methods for the perturbed harmonic oscillator in linear and nonlinear Schrödinger equations. Physical Review E, 83(4). doi:10.1103/physreve.83.046711 es_ES
dc.description.references Chambers, J. E. (2003). Symplectic Integrators with Complex Time Steps. The Astronomical Journal, 126(2), 1119-1126. doi:10.1086/376844 es_ES
dc.description.references Bandrauk, A. D., Dehghanian, E., & Lu, H. (2006). Complex integration steps in decomposition of quantum exponential evolution operators. Chemical Physics Letters, 419(4-6), 346-350. doi:10.1016/j.cplett.2005.12.006 es_ES
dc.description.references BANDRAUK, A. D., & LU, H. (2013). EXPONENTIAL PROPAGATORS (INTEGRATORS) FOR THE TIME-DEPENDENT SCHRÖDINGER EQUATION. Journal of Theoretical and Computational Chemistry, 12(06), 1340001. doi:10.1142/s0219633613400014 es_ES
dc.description.references Castella, F., Chartier, P., Descombes, S., & Vilmart, G. (2009). Splitting methods with complex times for parabolic equations. BIT Numerical Mathematics, 49(3), 487-508. doi:10.1007/s10543-009-0235-y es_ES
dc.description.references Hansen, E., & Ostermann, A. (2009). High order splitting methods for analytic semigroups exist. BIT Numerical Mathematics, 49(3), 527-542. doi:10.1007/s10543-009-0236-x es_ES
dc.description.references Blanes, S., Casas, F., Chartier, P., & Murua, A. (2012). Optimized high-order splitting methods for some classes of parabolic equations. Mathematics of Computation, 82(283), 1559-1576. doi:10.1090/s0025-5718-2012-02657-3 es_ES
dc.description.references Blanes, S., Casas, F., & Ros, J. (2000). Celestial Mechanics and Dynamical Astronomy, 77(1), 17-36. doi:10.1023/a:1008311025472 es_ES
dc.description.references McLachlan, R. I. (1995). Composition methods in the presence of small parameters. BIT Numerical Mathematics, 35(2), 258-268. doi:10.1007/bf01737165 es_ES
dc.description.references Laskar, J., & Robutel, P. (2001). Celestial Mechanics and Dynamical Astronomy, 80(1), 39-62. doi:10.1023/a:1012098603882 es_ES
dc.description.references Sakkos, K., Casulleras, J., & Boronat, J. (2009). High order Chin actions in path integral Monte Carlo. The Journal of Chemical Physics, 130(20), 204109. doi:10.1063/1.3143522 es_ES
dc.description.references Blanes, S., Casas, F., & Ros, J. (1999). Celestial Mechanics and Dynamical Astronomy, 75(2), 149-161. doi:10.1023/a:1008364504014 es_ES
dc.description.references Blanes, S., Casas, F., Farrés, A., Laskar, J., Makazaga, J., & Murua, A. (2013). New families of symplectic splitting methods for numerical integration in dynamical astronomy. Applied Numerical Mathematics, 68, 58-72. doi:10.1016/j.apnum.2013.01.003 es_ES
dc.description.references Blanes, S., Casas, F., & Ros, J. (2001). High-order Runge–Kutta–Nyström geometric methods with processing. Applied Numerical Mathematics, 39(3-4), 245-259. doi:10.1016/s0168-9274(00)00035-0 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem