- -

A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers

Show full item record

Olaya Marín, EJ.; Martinez-Capel, F.; Vezza, P. (2013). A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers. Knowledge and Management of Aquatic Ecosystems. 409(7):1-19. doi:10.1051/kmae/2013052

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/44816

Files in this item

Item Metadata

Title: A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers
Author:
UPV Unit: Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Issued date:
Abstract:
[EN] Machine learning (ML) techniques have become important to support decision making in management and conservation of freshwater aquatic ecosystems. Given the large number of ML techniques and to improve the ...[+]


[FR] Les techniques d’apprentissage automatique (ML) sont devenues importantes pour aider à la décision dans la gestion et la conservation des écosystèmes aquatiques d’eau douce. Étant donné le grand nombre de techniques ...[+]
Subjects: Artificial neural networks , Random forests , Native fish , Species richness , Mediterranean rivers , Réseaux de neurones , Forêts aléatoires , Poissons indigènes , Richesse spécifique , Rivières méditerranéennes
Copyrigths: Reserva de todos los derechos
Source:
Knowledge and Management of Aquatic Ecosystems. (issn: 1961-9502 )
DOI: 10.1051/kmae/2013052
Publisher:
EDP Sciences
Publisher version: http://dx.doi.org/10.1051/kmae/2013052
Description: The original publication is available at www.kmaejournal.org
Thanks:
This study was partially funded by the Spanish Ministry of Economy and Competitiveness with the projects SCARCE (Consolider-Ingenio 2010 CSD2009-00065) and POTECOL "Evaluacion del Potencial Ecologico de R os Regulados por ...[+]
Type: Artículo

This item appears in the following Collection(s)

Show full item record