- -

A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Olaya Marín, Esther Julia es_ES
dc.contributor.author Martinez-Capel, Francisco es_ES
dc.contributor.author Vezza, Paolo es_ES
dc.date.accessioned 2014-11-25T14:28:43Z
dc.date.available 2014-11-25T14:28:43Z
dc.date.issued 2013
dc.identifier.issn 1961-9502
dc.identifier.uri http://hdl.handle.net/10251/44816
dc.description The original publication is available at www.kmaejournal.org es_ES
dc.description.abstract [EN] Machine learning (ML) techniques have become important to support decision making in management and conservation of freshwater aquatic ecosystems. Given the large number of ML techniques and to improve the understanding of ML utility in ecology, it is necessary to perform comparative studies of these techniques as a preparatory analysis for future model applications. The objectives of this study were (i) to compare the reliability and ecological relevance of two predictive models for fish richness, based on the techniques of artificial neural networks (ANN) and random forests (RF) and (ii) to evaluate the conformity in terms of selected important variables between the two modelling approaches. The effectiveness of the models were evaluated using three performance metrics: the determination coefficient (R2), the mean squared error (MSE) and the adjusted determination coefficient (R2adj) and both models were developed using a k-fold crossvalidation procedure. According to the results, both techniques had similar validation performance (R2 = 68% for RF and R2 = 66% for ANN). Although the two methods selected different subsets of input variables, both models demonstrated high ecological relevance for the conservation of native fish in the Mediterranean region. Moreover, this work shows how the use of different modelling methods can assist the critical analysis of predictions at a catchment scale. es_ES
dc.description.abstract [FR] Les techniques d’apprentissage automatique (ML) sont devenues importantes pour aider à la décision dans la gestion et la conservation des écosystèmes aquatiques d’eau douce. Étant donné le grand nombre de techniques ML pour améliorer la compréhension de l’utilité des ML en écologie, il est nécessaire de réaliser des études comparatives de ces techniques comme analyse préparatoire pour des applications de modèles futurs. Les objectifs de cette étude étaient : (i) de comparer la fiabilité et la pertinence écologique de deux modèles prédictifs pour la richesse de poisson, basé sur les techniques de réseaux de neurones artifi- ciels (ANN) et les forêts aléatoires (RF) et (ii) d’évaluer la conformité en termes de sélection des variables importantes entre les deux approches de modélisation. L’efficacité des modèles a été évaluée au moyen de trois indicateurs de performance : le coefficient de détermination (R2), l’erreur quadratique moyenne (MSE) et le coefficient de détermination ajusté (R2 adj) et les deux modèles ont été développés en utilisant une procédure de validation croisée k-fold. Selon les résultats, les deux techniques ont des performances de validation similaires (R2 = 68 % pour RF et R2 = 66 % pour ANN). Bien que les deux méthodes aient choisi différents sous-ensembles de variables d’entrée, les deux modèles ont démontré la pertinence écologique pour la conservation des poissons indigènes dans la région méditerranéenne. En outre, ce travail montre comment l’utilisation de différentes méthodes de modélisation peut aider à l’analyse critique des prévisions à l’échelle du bassin versant. es_ES
dc.description.sponsorship This study was partially funded by the Spanish Ministry of Economy and Competitiveness with the projects SCARCE (Consolider-Ingenio 2010 CSD2009-00065) and POTECOL "Evaluacion del Potencial Ecologico de R os Regulados por Embalses y Desarrollo de Criterios para su mejora segun la Directiva Marco del Agua" (CGL2007-66412). In addition, the RF analysis was developed in the frame of the EU-funded HolRiverMed project (IEF, Marie Curie Actions). We thank the Confederacion Hidrografica del Jucar (Spanish Ministry of Agriculture, Food and Environment) for the data provided to develop this study and we also owe our gratitude to Sasa Plestenjak for the collaboration in building the first fish database for this research. We owe our gratitude to Chris Holmquist-Johnson and Leanne Hanson (USGS, Fort Collins Science Center) for the scientific review of the paper. en_EN
dc.language Inglés es_ES
dc.publisher EDP Sciences es_ES
dc.relation.ispartof Knowledge and Management of Aquatic Ecosystems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Artificial neural networks es_ES
dc.subject Random forests es_ES
dc.subject Native fish es_ES
dc.subject Species richness es_ES
dc.subject Mediterranean rivers es_ES
dc.subject Réseaux de neurones es_ES
dc.subject Forêts aléatoires es_ES
dc.subject Poissons indigènes es_ES
dc.subject Richesse spécifique es_ES
dc.subject Rivières méditerranéennes es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1051/kmae/2013052
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00065/ES/Evaluación y predicción de los efectos del cambio global en la cantidad y la calidad del agua en ríos ibéricos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CGL2007-66412/ES/EVALUACION DEL POTENCIAL ECOLOGICO DE RIOS REGULADOS POR EMBALSES Y DESARROLLO DE CRITERIOS PARA SU MEJORA SEGUN LA DIRECTIVA MARCO DEL AGUA./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/275577/EU/Environmental River Management: An Innovative Holistic Approach for Mediterranean Streams/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Olaya Marín, EJ.; Martinez-Capel, F.; Vezza, P. (2013). A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers. Knowledge and Management of Aquatic Ecosystems. 409(7):1-19. https://doi.org/10.1051/kmae/2013052 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1051/kmae/2013052 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 409 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 266280
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Commission
dc.description.references Abrahamsson C., Johansson J., Sparén A. and Lindgren F., 2003. Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets.Chemometrics Intell. Lab. Syst.,69, 3–12. es_ES
dc.description.references Aertsen W., Kint V., van Orshoven J., Özkan K. and Muys B., 2010. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests.Ecol. Model.,221, 1119–1130. es_ES
dc.description.references Aertsen W., Kint V., Van Orshoven J. and Muys B., 2011. Evaluation of modelling techniques for forest site productivity prediction in contrasting ecoregions using stochastic multicriteria acceptability analysis (SMAA).Environ. Modell. Softw.,26, 929–937. es_ES
dc.description.references Alba-Tercedor A., 1996. Macroinvertebrados acuaticos y calidad de las aguas de los ríos, IV Simposio del Agua en Andalucía (SIAGA), Almería, 203–213. es_ES
dc.description.references Alcaraz-Hernández J.D., Martínez-Capel F., Peredo-Parada M. and Hernández-Mascarell A.B., 2011. Mesohabitat heterogeneity in four mediterranean streams of the Jucar river basin (Eastern Spain).Limnetica,30, 363–378. es_ES
dc.description.references Allan J.D. and Castillo M.M., 2007. Stream ecology: structure and function of running waters, 2nd edn., Springer, Netherlands, 436 p. es_ES
dc.description.references Aparicio E., Vargas M.J., Olmo J.M. and de Sostoa A., 2000. Decline of native freshwater fishes in a Mediterranean watershed on the Iberian Peninsula: A quantitative assessment.Environ. Biol. Fishes,59, 11–19. es_ES
dc.description.references Aparicio E., Carmona-Catot G., Moyle P.B. and García-Berthou E., 2011. Development and evaluation of a fish-based index to assess biological integrity of Mediterranean streams.Aquat. Conserv.: Mar. Freshwat. Ecosyst.,21, 324–337. es_ES
dc.description.references Armitage D.W. and Ober H.K., 2010. A comparison of supervised learning techniques in the classification of bat echolocation calls.Ecol. Inform.,5, 465–473. es_ES
dc.description.references Beechie T.J., Sear D.A., Olden J.D., Pess G.R., Buffington J.M., Moir H., Roni P. and Pollock M.M., 2010. Process-based principles for restoring river ecosystems.Bioscience,60, 209–222. es_ES
dc.description.references Belmar O., Velasco J. and Martinez-Capel F., 2011. Hydrological classification of natural flow regimes to support environmental flow assessments in Intensively regulated Mediterranean Rivers, Segura River Basin (Spain).Environ. Manage.,47, 992–1004. es_ES
dc.description.references Bernardo J.M., Ilhéu M., Matono P. and Costa A.M., 2003. Interannual variation of fish assemblage structure in a Mediterranean river: implications of streamflow on the dominance of native or exotic species.River Res. Appl.,19, 521–532. es_ES
dc.description.references Breiman L., 2001a. Random Forests.Mach. Learn.,45, 5–32. es_ES
dc.description.references Breiman L., 2001b. Statistical modeling: the two cultures.Stat. Sci.,16, 199–231. es_ES
dc.description.references Breiman L., Friedman J., Olshen R. and Stone C., 1984. Classification and Regression Trees, Wadsworth International Group, Belmont, California, 368 p. es_ES
dc.description.references Caissie D., 2006. River discharge and channel width relationships for New Brunswick rivers. Canadian Technical Report of Fisheries and Aquatic Sciences, Rept. 2637, 26 p. es_ES
dc.description.references Carballo R., Cancela J., Iglesias G., Marín A., Neira X. and Cuesta T., 2009. WFD indicators and definition of the ecological status of rivers.Water Resour. Manag.,23, 2231–2247. es_ES
dc.description.references Cheng L., Lek S., Lek-Ang S. and Li Z., 2012. Predicting fish assemblages and diversity in shallow lakes in the Yangtze River basin.Limnologica,42, 127–136. es_ES
dc.description.references CHJ, 2007. Estudio general sobre la Demarcación Hidrográfica del Júcar, Confederación Hidrográfica del Júcar, Madrid, 206 p. es_ES
dc.description.references Corbacho C. and Sánchez J.M., 2001. Patterns of species richness and introduced species in native freshwater fish faunas of a Mediterranean-type basin: the Guadiana River (southwest Iberian Peninsula).Regul. River.,17, 699–707. es_ES
dc.description.references Costa R.M.S., Martínez-Capel F., Muñoz-Mas R., Alcaraz-Hernández J.D. and Garófano-Gómez V., 2012. Habitat suitability modelling at mesohabitat scale and effects of dam operation on the endangered Júcar nase,Parachondrostoma arrigonis(river Cabriel, Spain).River Res. Appl.,28, 740–752. es_ES
dc.description.references Cutler D.R., Edwards T.C., Beard K.H., Cutler A., Hess K.T., Gibson J. and Lawler J.J., 2007. Random Forests for classification in ecology.Ecology,88, 2783–2792. es_ES
dc.description.references Demuth H., Beale M. and Hagan M., 2010. Neural network toolbox user’s guide, The MathWorks Inc, Natick, Massachusetts, 901 p. es_ES
dc.description.references Dimopoulos Y., Bourret P. and Lek S., 1995. Use of some sensitivity criteria for choosing networks with good generalization ability.Neural Process. Lett.,2, 1–4. es_ES
dc.description.references Doadrio I., 2001. Atlas y libro rojo de los peces continentales de España, Ministerio de Medio Ambiente, Madrid, 358 p. es_ES
dc.description.references Doadrio I., 2002. Origen y Evolución de la Ictiofauna Continental Española.En: Atlas y libro rojo de los peces continentales de España. 2da ed, CSIC y Ministerio del Medio Ambiente, Madrid, 20–34. es_ES
dc.description.references Dolloff C.A., Hankin D.G. and Reeves G.H., 1993. Basinwide estimation of habitat and fish populations in streams, U.S. Department of Agriculture, Blacksburg, Virginia, 25 p. es_ES
dc.description.references Dormann C.F., 2011. Modelling species’ distributions.In: Jopp F., Reuter H. and Breckling B. (eds.), Modelling complex ecological dynamics: an Introduction into ecological modelling for students, teachers and scientists, Springer-Verlag, Berlin, 179–196. es_ES
dc.description.references Drew C.A., Wiersma Y. and Huettmann F., 2011. Predictive species and habitat modeling in landscape ecology: concepts and applications, Springer, New York, 328 p. es_ES
dc.description.references Estrela T., Fidalgo A., Fullana J., Maestu J., Pérez M.A. and Pujante A.M., 2004. Júcar Pilot River Basin, provisional article 5 report Pursuant to the Water Framework Directive, Confederación Hidrográfica del Júcar, Valencia, 200 p. es_ES
dc.description.references Evans J. and Cushman S., 2009. Gradient modeling of conifer species using random forests.Landsc. Ecol.,24, 673–683. es_ES
dc.description.references Evans J.S., Murphy M.A., Holden Z.A. and Cushman S.A., 2011. Modeling species distribution and change using Random Forest.In: Drew C.A., Wiersma Y.F. and Huettmann F. (eds.), Predictive Species and Habitat Modeling in Landscape Ecology, Springer New York, 139–159. es_ES
dc.description.references Fausch K., Torgersen C., Baxter C. and Li H., 2002. Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes.Bioscience,52, 483–498. es_ES
dc.description.references Ferreira T., Oliveira J., Caiola N., De Sostoa A., Casals F., Cortes R., Economou A., Zogaris S., Garcia de Jalón D., Ilhéu M., Martinez-Capel F., Pont D., Rogers C. and Prenda J., 2007. Ecological traits of fish assemblages from Mediterranean Europe and their responses to human disturbance.Fisheries Manag. Ecol.,14, 473–481. es_ES
dc.description.references Filipe A.F., Magalhães M.F. and Collares-Pereira M.J., 2010. Native and introduced fish species richness in Mediterranean streams: the role of multiple landscape influences.Divers. Distrib.,16, 773–785. es_ES
dc.description.references Franklin J., 2010. Mapping species distributions: spatial inference and prediction, Cambridge University Press, New York, 338 p. es_ES
dc.description.references García-Berthou E., Alcaraz C., Pou-Rovira Q., Zamora L., Coenders G. and Feo C., 2005. Introduction pathways and establishment rates of invasive aquatic species in Europe.Can. J. Fish. Aquat. Sci.,62, 453–463. es_ES
dc.description.references Garófano-Gómez V., Martínez-Capel F., Peredo-Parada M., Olaya-Marín E.J., Muñoz-Mas R., Costa R. and Pinar-Arenas L., 2011. Assessing hydromorphological and floristic patterns along a regulated Mediterranean river: The Serpis River (Spain).Limnetica,30, 307–238. es_ES
dc.description.references Gevrey M., Dimopoulos I. and Lek S., 2003. Review and comparison of methods to study the contribution of variables in artificial neural network models.Ecol. Model.,160, 249–264. es_ES
dc.description.references Goethals P., Dedecker A., Gabriels W., Lek S. and De Pauw N., 2007. Applications of artificial neural networks predicting macroinvertebrates in freshwaters.Aquat. Ecol.,41, 491–508. es_ES
dc.description.references Granado-Lorencio C., 1996. Ecología de peces, Universidad de Sevilla, Sevilla, 353 p. es_ES
dc.description.references Granado-Lorencio C., 2000. Ecología de comunidades: el paradigma de los peces de agua dulce, Universidad de Sevilla, Sevilla, 284 p. es_ES
dc.description.references Guisan A. and Zimmermann N.E., 2000. Predictive habitat distribution models in ecology.Ecol. Model.,135, 147–186. es_ES
dc.description.references Gutiérrez-Estrada J.C. and Bilton D.T., 2010. A heuristic approach to predicting water beetle diversity in temporary and fluctuating waters.Ecol. Model.,221, 1451–1462. es_ES
dc.description.references Hastie T., Tibshirani R. and Friedman J., 2009. The Elements of Statistical Learning: data mining, Inference and prediction, Springer, 768 p. es_ES
dc.description.references Hauser-Davis R.A., Oliveira T.F., Silveira A.M., Silva T.B. and Ziolli R.L., 2010. Case study: Comparing the use of nonlinear discriminating analysis and Artificial Neural Networks in the classification of three fish species: acaras (Geophagus brasiliensis), tilapias (Tilapia rendalli) and mullets (Mugil liza).Ecol. Inform.,5, 474–478. es_ES
dc.description.references He Y., Wang J., Lek-Ang S. and Lek S., 2010. Predicting assemblages and species richness of endemic fish in the upper Yangtze River.Sci. Total Environ.,408, 4211–4220. es_ES
dc.description.references Hermoso V. and Clavero M., 2011. Threatening processes and conservation management of endemic freshwater fish in the Mediterranean basin: a review.Mar. Freshwater Res.,62, 244–254. es_ES
dc.description.references Hooten M.B., 2011. The state of spatial and spatio-temporal statistical modeling.In: Drew C., Wiersma Y. and Huettmann F. (eds.), Predictive Species and Habitat Modeling in Landscape Ecology, Springer New York, 29–41. es_ES
dc.description.references Ibarra A.A., Gevrey M., Park Y.-S., Lim P. and Lek S., 2003. Modelling the factors that influence fish guilds composition using a back-propagation network: assessment of metrics for indices of biotic integrity.Ecol. Model.,160, 281–290. es_ES
dc.description.references Isa I.S., Omar S., Saad Z. and Osman M.K., 2010. Performance comparison of different multilayer perceptron network activation functions in automated weather classification. Proceedings of the 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, Kota Kinabalu, Malaysia, 71–75. es_ES
dc.description.references Jackson D.A., Peres-Neto P.R. and Olden J.D., 2001. What controls who is where in freshwater fish communities the roles of biotic, abiotic, and spatial factors.Can. J. Fish. Aquat. Sci.,58, 157–170. es_ES
dc.description.references Jorgensen S.E. and Fath B.D., 2011. Fundamentals of ecological modelling: applications in environmental management and research. 4th ed., Elsevier, Amsterdam, 432 p. es_ES
dc.description.references Kampichler C., Wieland R., Calmé S., Weissenberger H. and Arriaga-Weiss S., 2010. Classification in conservation biology: a comparison of five machine-learning methods.Ecol. Inform.,5, 441–450. es_ES
dc.description.references Karul C., Soyupak S., Çilesiz A.F., Akbay N. and Germen E., 2000. Case studies on the use of neural networks in eutrophication modeling.Ecol. Model.,134, 145–152. es_ES
dc.description.references Knudby A., LeDrew E. and Brenning A., 2010. Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques.Remote Sens. Environ.,114, 1230–1241. es_ES
dc.description.references Kroes M.J., Gough P.P., Wanningen H., Schollema P., Ordeix M. and Vesely D., 2006. From sea to source. Practical guidance for the restoration of fish migration in European Rivers. Interreg IIIC Project “Community Rivers”, Groningen, The Netherlands, 119 p. es_ES
dc.description.references Kurková V., 1992. Kolmogorov’s theorem and multilayer neural networks.Neural Netw.,5, 501-506. es_ES
dc.description.references Leclere J., Oberdorff T., Belliard J. and Leprieur F., 2011. A comparison of modeling techniques to predict juvenile 0 + fish species occurrences in a large river system.Ecol. Inform.,6, 276–285. es_ES
dc.description.references Lek S., Scardi M., Verdonschot P., Descy J.P. and Park Y.S. (eds.), 2005. Modelling community structure in freshwater ecosystems, Springer-Verlag, Berlin. es_ES
dc.description.references Leopold L.B., Wolman M.G. and Miller J.P., 1964. Fluvial processes in geomorphology, W.H. Freeman, San Francisco, 544 p. es_ES
dc.description.references Leprieur F., Brosse S., García-Berthou E., Oberdorff T., Olden J.D. and Townsend C.R., 2009. Scientific uncertainty and the assessment of risks posed by non-native freshwater fishes.Fish. Fish.,10, 88–97. es_ES
dc.description.references Liaw A. and Wiener M., 2002. Classification and regression by Random Forest.R News,2, 18–22. es_ES
dc.description.references Magalhães M.F., Beja P., Schlosser I.J. and Collares-Pereira M.J., 2007. Effects of multi-year droughts on fish assemblages of seasonally drying Mediterranean streams.Freshw. Biol.,52, 1494–1510. es_ES
dc.description.references Maier H.R. and Dandy G.C., 2000. Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications.Environ. Modell. Softw.,15, 101–124. es_ES
dc.description.references Mastrorillo S., Dauba F., Oberdorff T., Guégan J.-F. and Lek S., 1998. Predicting local fish species richness in the garonne river basin.C.R. Acad. Sci. - Ser. III - Sciences de la Vie,321, 423–428. es_ES
dc.description.references MMARM, 2008. Orden MARM/2656/2008 de 10 septiembre, por la que se aprueba la instrucción de planificación hidrológica. BOE núm. 229, de 22 de septiembre de 2008., Ministerio de Medio Ambiente, y Medio Rural y Marino (MMARM), Madrid. es_ES
dc.description.references Mouton A.M., Alcaraz-Hernández J.D., De Baets B., Goethals P.L.M. and Martínez-Capel F., 2011. Data-driven fuzzy habitat suitability models for brown trout in Spanish Mediterranean rivers.Environ. Modell. Softw.,26, 615–622. es_ES
dc.description.references Munné A., Prat N., Solà C., Bonada N. and Rieradevall M., 2003. A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index.Aquat. Conserv.: Mar. Freshwat. Ecosyst.,13, 147–163. es_ES
dc.description.references Murphy M.A., Evans J.S. and Storfer A., 2010. QuantifyingBufo boreasconnectivity in Yellowstone National Park with landscape genetics.Ecology,91, 252–261. es_ES
dc.description.references Naiman R.J., Decamps H. and Pollock M., 1993. The role of riparian corridors in maintaining regional biodiversity.Ecol. Appl.,3, 209–212. es_ES
dc.description.references Oberdorff T., Guégan J.-F. and Hugueny B., 1995. Global scale patterns of fish species richness in rivers.Ecography,18, 345–352. es_ES
dc.description.references Olaya-Marín E.J., Martínez-Capel F., Soares Costa R.M. and Alcaraz-Hernández J.D., 2012. Modelling native fish richness to evaluate the effects of hydromorphological changes and river restoration (Júcar River Basin, Spain).Sci. Total Environ.,440, 95–105. es_ES
dc.description.references Olden J.D. and Jackson D.A., 2002. Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks.Ecol. Model.,154, 135–150. es_ES
dc.description.references Olden J.D., Poff N.L. and Bledsoe B.P., 2006. Incorporating ecological knowledge into ecoinformatics: An example of modeling hierarchically structured aquatic communities with neural networks.Ecol. Inform.,1, 33–42. es_ES
dc.description.references Olden J.D., Lawler J.J. and Poff N.L., 2008. Machine learning methods without tears: A primer for ecologists.Q. Rev. Biol.,83, 171–193. es_ES
dc.description.references Ollero A., Ibisate A., Gonzalo L., Acín V., Ballarín D., Díaz E., Gimeno M., Domenech S., Granado D., García H., Mora D. and Sánchez M. 2011. The IHG index for hydromorphological quality assessment of rivers and streams: updated versionLimnetica,30, 255–262. es_ES
dc.description.references Özesmi S.L., Tan C.O. and Özesmi U., 2006. Methodological issues in building, training, and testing artificial neural networks in ecological applications.Ecol. Model.,195, 83–93. es_ES
dc.description.references Paredes-Arquiola J., Martinez-Capel F., Solera A. and Aguilella V., 2013. Implementing environmental flows in complex water resources systems–case study: the Duero river basin, Spain.River Res. Appl.,29, 451–468. es_ES
dc.description.references Paredes-Arquiola J., Solera-Solera A., Martínez-Capel F., Momblanch-Benavent A. and Andreu-Álvarez J. Integrating water management, habitat modelling and water quality at basin scale environmental flow assessment – Tormes River (Spain).Hydrol. Sci. J.-J. Sci. Hydrol., in press. es_ES
dc.description.references Poff N.L., Allan J.D., Bain M.B., Karr J.R., Prestegaard K.L., Richter B.D., Sparks R.E. and Stromberg J.C., 1997. The natural klow regime.Bioscience,47, 769–784. es_ES
dc.description.references Poff N.L., Richter B.D., Arthington A.H., Bunn S.E., Naiman R.J., Kendy E., Acreman M., Apse C., Bledsoe B.P., Freeman M.C., Henriksen J., Jacobson R.B., Kennen J.G., Merritt D.M., O’Keeffe J.H., Olden J.D., Rogers K., Tharme R.E. and Warner A., 2010. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards.Freshw. Biol.,55, 147–170. es_ES
dc.description.references R Development Core Team, 2009. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 409 p. es_ES
dc.description.references Reunanen J., 2003. Overfitting in making comparisons between variable selection methods.J. Mach. Learn. Res.,3, 1371–1382. es_ES
dc.description.references Reyjol Y., Hugueny B., Pont D., Bianco P.G., Beier U., Caiola N., Casals F., Cowx I., Economou A., Ferreira T., Haidvogl G., Noble R., De Sostoa A., Vigneron T. and Virbickas T., 2007. Patterns in species richness and endemism of European freshwater fish.Glob. Ecol. Biogeogr.,16, 65–75. es_ES
dc.description.references Sánchez-Montoya M.M., Vidal-Abarca M.R. and Suárez M.L., 2010. Comparing the sensitivity of diverse macroinvertebrate metrics to a multiple stressor gradient in Mediterranean streams and its influence on the assessment of ecological status.Ecol. Indic.,10, 896–904. es_ES
dc.description.references Singh K.P., Basant A., Malik A. and Jain G., 2009. Artificial neural network modeling of the river water quality–A case study.Ecol. Model.,220, 888–895. es_ES
dc.description.references Siroky D.S., 2009. Navigating Random Forests and related advances in algorithmic modeling.Statist. Surv.,3, 147–163. es_ES
dc.description.references Smith K.G. and Darwall W.R.T., 2006. The status and distribution of freshwater fish endemic to the mediterranean basin, IUCN – The World Conservation Union, Gland, Switzerland/Cambridge, UK., 41 p. es_ES
dc.description.references Strayer D.L. and Dudgeon D., 2010. Freshwater biodiversity conservation: recent progress and future challenges.J. N. Am. Benthol. Soc.,29, 344–358. es_ES
dc.description.references Tirelli T. and Pessani D., 2009. Use of decision tree and artificial neural network approaches to model presence/absence ofTelestes muticellusin piedmont (North-Western Italy).River Res. Appl.,25, 1001–1012. es_ES
dc.description.references Tirelli T. and Pessani D., 2011. Importance of feature selection in decision-tree and artificial-neural-network ecological applications.Alburnus alburnus alborella: A practical example.Ecol. Inform.,6, 309-315. es_ES
dc.description.references Tirelli T., Pozzi L. and Pessani D., 2009. Use of different approaches to model presence/absence ofSalmo marmoratusin Piedmont (Northwestern Italy).Ecol. Inform.,4, 234–242. es_ES
dc.description.references Townsend C., Begon M. and Harper J., 2008. Essentials of Ecology, 3rd edn, Wiley-Blackwell, Oxford. es_ES
dc.description.references van Jaarsveld A.S., Freitag S., Chown S.L., Muller C., Koch S., Hull H., Bellamy C., Kruger M., Endrody-Younga S., Mansell M.W. and Scholtz C.H., 1998. Biodiversity assessment and conservation strategies.Science,279, 2106–2108. es_ES
dc.description.references Vezza P., Comoglio C., Rosso M. and Viglione A., 2010. Low flows regionalization in North-Western Italy.Water Resour. Manag.,24, 4049–4074. es_ES
dc.description.references Vezza P., Parasiewicz P., Rosso M. and Comoglio C., 2012. Defining minimum environmental flows at regional scale: application of mesoscale habitat models and catchments classification.River Res. Appl.,28, 675–792. es_ES
dc.description.references Vila-Gispert A., Alcaraz C. and García-Berthou E., 2005. Life-history traits of invasive fish in small Mediterranean streams.Biol. Invasions,7, 107-116–116. es_ES
dc.description.references Vincenzi S., Zucchetta M., Franzoi P., Pellizzato M., Pranovi F., De Leo G.A. and Torricelli P., 2011. Application of a Random Forest algorithm to predict spatial distribution of the potential yield ofRuditapes philippinarumin the Venice lagoon, Italy.Ecol. Model.,222, 1471–1478. es_ES
dc.description.references Wells B., Yu C., Koroukian S. and Kattan M., 2011. Comparison of variable selection methods for the generation of parsimonious prediction models for use in clinical practice. In: Proceedings of the 33rd Annual Meeting of the Society for Medical Decision Making, Chicago, US. es_ES
dc.description.references Xu L. and Zhang W.-J., 2001. Comparison of different methods for variable selection.Anal. Chim. Acta,446, 475–481. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem