- -

Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling

Show full item record

Kahm, M.; Navarrete, C.; Llopis Torregrosa, V.; Herrera, R.; Barreto, L.; Yenush, L.; Ariño, J.... (2012). Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling. PLoS Computational Biology. 8(6):1-11. https://doi.org/10.1371/journal.pcbi.1002548

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/44833

Files in this item

Item Metadata

Title: Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling
Author: Kahm, Matthias Navarrete, Clara Llopis Torregrosa, Vicent Herrera, Rito Barreto, Lina Yenush, Lynne Ariño, Joaquin Ramos, Jose Kschischo, Maik
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
The intrinsic ability of cells to adapt to a wide range of environmental conditions is a fundamental process required for survival. Potassium is the most abundant cation in living cells and is required for essential cellular ...[+]
Subjects: PLASMA-MEMBRANE ATPASE , SACCHAROMYCES-CEREVISIAE , SALT TOLERANCE , PERFECT ADAPTATION , INTRACELLULAR PH , K+ TRANSPORT , H+-ATPASE , CHANNEL , CELLS , ANTIPORTER
Copyrigths: Reconocimiento (by)
Source:
PLoS Computational Biology. (issn: 1553-734X )
DOI: 10.1371/journal.pcbi.1002548
Publisher:
Public Library of Science
Publisher version: http://dx.doi.org/10.1371/journal.pcbi.1002548
Project ID:
info:eu-repo/grantAgreement/BMBF//0315786C/
...[+]
info:eu-repo/grantAgreement/BMBF//0315786C/
info:eu-repo/grantAgreement/MEC//GEN2006-27748-C2-2-E/ES/TRANSLUCENT: Gene interaction networks and models of cation homeostasis in Saccharomyces cerevisiae/ /
info:eu-repo/grantAgreement/GVA//ACOMP%2F2011%2F024/
info:eu-repo/grantAgreement/MICINN//BFU2008-04188-C03-02/ES/RUTAS DE TRANSDUCCION DE SEÑALES EN LA REGULACION DE LA HOMEOSTASIS IONICA/ /
info:eu-repo/grantAgreement/MEC//GEN2006-27748-C2-1-E/ES/TRANSLUCENT: Gene interaction networks and models of cation homeostasis in Saccharomyces cerevisiae/
info:eu-repo/grantAgreement/MICINN//EUI2009-04153/ES/MODELIZACION DE LA HOMEOSTASIS IONICA EN LA LEVADURA SACCHAROMYCES CEREVISIAE (TRANSLUCENT-2)/
info:eu-repo/grantAgreement/MICINN//BFU2008-04188-C03-03/ES/REGULACION DE LOS FLUJOS DE CATIONES COMO DETERMINANTES DE TOLERANCIA SALINA EN LEVADURAS/
info:eu-repo/grantAgreement/MICINN//BFU2011-30197-C03-03/ES/PAPEL DEL TRAFICO DE PROTEINAS EN LA HOMEOSTASIS DE IONES Y NUTRIENTES EN LEVADURA Y PLANTAS/
info:eu-repo/grantAgreement/MICINN//BFU2008-04188-C03-01/ES/VIAS DE TRANSDUCCION DE SEÑAL QUE CONTROLAN LA HOMEOSTASIS DE IONES Y NUTRIENTES EN LEVADURAS/
[-]
Thanks:
Maik Kschischo and Matthias Kahm were supported by BMBF grant 0315786C (SysMo2/Translucent 2). Work in Joaquin Arino laboratory was supported by grants BFU2008-04188-C03-01, BFU2011-30197-C3-01, GEN2006-27748-C2-1-E/SYS ...[+]
Type: Artículo

References

Blatt, M. R., & Slayman, C. L. (1987). Role of «active» potassium transport in the regulation of cytoplasmic pH by nonanimal cells. Proceedings of the National Academy of Sciences, 84(9), 2737-2741. doi:10.1073/pnas.84.9.2737

Rodrı́guez-Navarro, A. (2000). Potassium transport in fungi and plants. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1469(1), 1-30. doi:10.1016/s0304-4157(99)00013-1

Arino, J., Ramos, J., & Sychrova, H. (2010). Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiology and Molecular Biology Reviews, 74(1), 95-120. doi:10.1128/mmbr.00042-09 [+]
Blatt, M. R., & Slayman, C. L. (1987). Role of «active» potassium transport in the regulation of cytoplasmic pH by nonanimal cells. Proceedings of the National Academy of Sciences, 84(9), 2737-2741. doi:10.1073/pnas.84.9.2737

Rodrı́guez-Navarro, A. (2000). Potassium transport in fungi and plants. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1469(1), 1-30. doi:10.1016/s0304-4157(99)00013-1

Arino, J., Ramos, J., & Sychrova, H. (2010). Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiology and Molecular Biology Reviews, 74(1), 95-120. doi:10.1128/mmbr.00042-09

Merchan, S., Pedelini, L., Hueso, G., Calzada, A., Serrano, R., & Yenush, L. (2010). Genetic alterations leading to increases in internal potassium concentrations are detrimental for DNA integrity in Saccharomyces cerevisiae. Genes to Cells, 16(2), 152-165. doi:10.1111/j.1365-2443.2010.01472.x

Buch-Pedersen, M. J., Rudashevskaya, E. L., Berner, T. S., Venema, K., & Palmgren, M. G. (2006). Potassium as an Intrinsic Uncoupler of the Plasma Membrane H+-ATPase. Journal of Biological Chemistry, 281(50), 38285-38292. doi:10.1074/jbc.m604781200

Serrano, R. (1983). In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Letters, 156(1), 11-14. doi:10.1016/0014-5793(83)80237-3

Ramos, J., Alijo, R., Haro, R., & Rodriguez-Navarro, A. (1994). TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae. Journal of Bacteriology, 176(1), 249-252. doi:10.1128/jb.176.1.249-252.1994

Bihler, H., Slayman, C. L., & Bertl, A. (1998). NSC1: a novel high-current inward rectifier for cations in the plasma membrane of Saccharomyces cerevisiae. FEBS Letters, 432(1-2), 59-64. doi:10.1016/s0014-5793(98)00832-1

Bañuelos, M. A., Ruiz, M. C., Jiménez, A., Souciet, J.-L., Potier, S., & Ramos, J. (2001). Role of the Nha1 antiporter in regulating K+influx inSaccharomyces cerevisiae. Yeast, 19(1), 9-15. doi:10.1002/yea.799

Haro, R., Garciadeblas, B., & Rodriguez-Navarro, A. (1991). A novel P-type ATPase from yeast involved in sodium transport. FEBS Letters, 291(2), 189-191. doi:10.1016/0014-5793(91)81280-l

Märquez, J., & Serrano, R. (1996). Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast. FEBS Letters, 382(1-2), 89-92. doi:10.1016/0014-5793(96)00157-3

Ruiz, A., & Ariño, J. (2007). Function and Regulation of theSaccharomyces cerevisiae ENASodium ATPase System. Eukaryotic Cell, 6(12), 2175-2183. doi:10.1128/ec.00337-07

Bertl, A., Slayman, C., & Gradmann, D. (1993). Gating and conductance in an outward-rectifying K+ channel from the plasma membrane of Saccharomyces cerevisiae. The Journal of Membrane Biology, 132(3). doi:10.1007/bf00235737

Martínez-Muñoz, G. A., & Peña, A. (2005). In situ study of K+ transport into the vacuole ofSaccharomyces cerevisiae. Yeast, 22(9), 689-704. doi:10.1002/yea.1238

López, R., Enríquez, E., & Peña, A. (1999). Effects of weak acids on cation accumulation, ΔpH and ΔΨ in yeast. Yeast, 15(7), 553-562. doi:10.1002/(sici)1097-0061(199905)15:7<553::aid-yea397>3.0.co;2-v

Muzzey, D., Gómez-Uribe, C. A., Mettetal, J. T., & van Oudenaarden, A. (2009). A Systems-Level Analysis of Perfect Adaptation in Yeast Osmoregulation. Cell, 138(1), 160-171. doi:10.1016/j.cell.2009.04.047

Petrezselyova, S., Zahradka, J., & Sychrova, H. (2010). Saccharomyces cerevisiae BY4741 and W303-1A laboratory strains differ in salt tolerance. Fungal Biology, 114(2-3), 144-150. doi:10.1016/j.funbio.2009.11.002

Casado, C., Yenush, L., Melero, C., del Carmen Ruiz, M., Serrano, R., Pérez-Valle, J., … Ramos, J. (2010). Regulation of Trk-dependent potassium transport by the calcineurin pathway involves the Hal5 kinase. FEBS Letters, 584(11), 2415-2420. doi:10.1016/j.febslet.2010.04.042

Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter. Molecular and Cellular Biology, 19(5), 3328-3337. doi:10.1128/mcb.19.5.3328

Yenush, L., Merchan, S., Holmes, J., & Serrano, R. (2005). pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Molecular and Cellular Biology, 25(19), 8683-8692. doi:10.1128/mcb.25.19.8683-8692.2005

Boron, W. F. (1976). Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. The Journal of General Physiology, 67(1), 91-112. doi:10.1085/jgp.67.1.91

Boron, W. F. (2004). Regulation of intracellular pH. Advances in Physiology Education, 28(4), 160-179. doi:10.1152/advan.00045.2004

Yenush, L. (2002). The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. The EMBO Journal, 21(5), 920-929. doi:10.1093/emboj/21.5.920

Bihler, H., Slayman, C. L., & Bertl, A. (2002). Low-affinity potassium uptake by Saccharomyces cerevisiae is mediated by NSC1, a calcium-blocked non-specific cation channel. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1558(2), 109-118. doi:10.1016/s0005-2736(01)00414-x

Serrano, R. (1978). Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae. Molecular and Cellular Biochemistry, 22(1). doi:10.1007/bf00241470

Portillo, F., & Serrano, R. (1988). Dissection of functional domains of the yeast proton-pumping ATPase by directed mutagenesis. The EMBO Journal, 7(6), 1793-1798. doi:10.1002/j.1460-2075.1988.tb03010.x

Vallejo, C. G., & Serrano, R. (1989). Physiology of mutants with reduced expression of plasma membrane H+-ATPase. Yeast, 5(4), 307-319. doi:10.1002/yea.320050411

Barreto, L., Canadell, D., Petrezsélyová, S., Navarrete, C., Marešová, L., Peréz-Valle, J., … Ariño, J. (2011). A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae. Eukaryotic Cell, 10(9), 1241-1250. doi:10.1128/ec.05029-11

Amoroso, G., Morell-Avrahov, L., Müller, D., Klug, K., & Sültemeyer, D. (2005). The gene NCE103 (YNL036w) from Saccharomyces cerevisiae encodes a functional carbonic anhydrase and its transcription is regulated by the concentration of inorganic carbon in the medium. Molecular Microbiology, 56(2), 549-558. doi:10.1111/j.1365-2958.2005.04560.x

Barkai, N., & Leibler, S. (1997). Robustness in simple biochemical networks. Nature, 387(6636), 913-917. doi:10.1038/43199

Yi, T.-M., Huang, Y., Simon, M. I., & Doyle, J. (2000). Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proceedings of the National Academy of Sciences, 97(9), 4649-4653. doi:10.1073/pnas.97.9.4649

Miranda, M., Bashi, E., Vylkova, S., Edgerton, M., Slayman, C., & Rivetta, A. (2009). Conservation and dispersion of sequence and function in fungal TRK potassium transporters: focus onCandida albicans. FEMS Yeast Research, 9(2), 278-292. doi:10.1111/j.1567-1364.2008.00471.x

Johansson, I., & Blatt, M. R. (2006). Interactive domains between pore loops of the yeast K+ channel TOK1 associate with extracellular K+ sensitivity. Biochemical Journal, 393(3), 645-655. doi:10.1042/bj20051380

Kuroda, T., Bihler, H., Bashi, E., Slayman, C. L., & Rivetta, A. (2004). Chloride Channel Function in the Yeast TRK-Potassium Transporters. Journal of Membrane Biology, 198(3), 177-192. doi:10.1007/s00232-004-0671-1

Ohgaki, R., Nakamura, N., Mitsui, K., & Kanazawa, H. (2005). Characterization of the ion transport activity of the budding yeast Na+/H+ antiporter, Nha1p, using isolated secretory vesicles. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1712(2), 185-196. doi:10.1016/j.bbamem.2005.03.011

Endresen, L. P., Hall, K., Høye, J. S., & Myrheim, J. (2000). A theory for the membrane potential of living cells. European Biophysics Journal, 29(2), 90-103. doi:10.1007/s002490050254

Edgar, R. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207-210. doi:10.1093/nar/30.1.207

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record