- -

Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kahm, Matthias es_ES
dc.contributor.author Navarrete, Clara es_ES
dc.contributor.author Llopis Torregrosa, Vicent es_ES
dc.contributor.author Herrera, Rito es_ES
dc.contributor.author Barreto, Lina es_ES
dc.contributor.author Yenush, Lynne es_ES
dc.contributor.author Ariño, Joaquin es_ES
dc.contributor.author Ramos, Jose es_ES
dc.contributor.author Kschischo, Maik es_ES
dc.date.accessioned 2014-11-25T19:03:03Z
dc.date.available 2014-11-25T19:03:03Z
dc.date.issued 2012-06
dc.identifier.issn 1553-734X
dc.identifier.uri http://hdl.handle.net/10251/44833
dc.description.abstract The intrinsic ability of cells to adapt to a wide range of environmental conditions is a fundamental process required for survival. Potassium is the most abundant cation in living cells and is required for essential cellular processes, including the regulation of cell volume, pH and protein synthesis. Yeast cells can grow from low micromolar to molar potassium concentrations and utilize sophisticated control mechanisms to keep the internal potassium concentration in a viable range. We developed a mathematical model for Saccharomyces cerevisiae to explore the complex interplay between biophysical forces and molecular regulation facilitating potassium homeostasis. By using a novel inference method ("the reverse tracking algorithm'') we predicted and then verified experimentally that the main regulators under conditions of potassium starvation are proton fluxes responding to changes of potassium concentrations. In contrast to the prevailing view, we show that regulation of the main potassium transport systems (Trk1,2 and Nha1) in the plasma membrane is not sufficient to achieve homeostasis. es_ES
dc.description.sponsorship Maik Kschischo and Matthias Kahm were supported by BMBF grant 0315786C (SysMo2/Translucent 2). Work in Joaquin Arino laboratory was supported by grants BFU2008-04188-C03-01, BFU2011-30197-C3-01, GEN2006-27748-C2-1-E/SYS (SysMo/Translucent) and EUI2009-04147 (SysMo2/Translucent 2), from the MICINN, Spain. Joaquin Arino was the recipient of an Ajut 2009SGR-1091 and an ICREA Academia Award (Generalitat de Catalunya). Work in Jose Ramos laboratory was supported by grants GEN2006-27748-C2-2-E/SYS (SysMo/Translucent), BFU2008-04188-C03-03 and EUI2009-04153 (SysMo2/Translucent 2), (MICINN, Spain). Work in Lynne Yenush laboratory was supported by grants BFU2008-04188-C03-02, BFU2011-30197-C03-03 (MICINN, Spain) and ACOMP/2011/024 (Generalitat Valenciana). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS Computational Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject PLASMA-MEMBRANE ATPASE es_ES
dc.subject SACCHAROMYCES-CEREVISIAE es_ES
dc.subject SALT TOLERANCE es_ES
dc.subject PERFECT ADAPTATION es_ES
dc.subject INTRACELLULAR PH es_ES
dc.subject K+ TRANSPORT es_ES
dc.subject H+-ATPASE es_ES
dc.subject CHANNEL es_ES
dc.subject CELLS es_ES
dc.subject ANTIPORTER es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pcbi.1002548
dc.relation.projectID info:eu-repo/grantAgreement/BMBF//0315786C/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//GEN2006-27748-C2-2-E/ES/TRANSLUCENT: Gene interaction networks and models of cation homeostasis in Saccharomyces cerevisiae/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2011%2F024/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2008-04188-C03-02/ES/RUTAS DE TRANSDUCCION DE SEÑALES EN LA REGULACION DE LA HOMEOSTASIS IONICA/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//GEN2006-27748-C2-1-E/ES/TRANSLUCENT: Gene interaction networks and models of cation homeostasis in Saccharomyces cerevisiae/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//EUI2009-04153/ES/MODELIZACION DE LA HOMEOSTASIS IONICA EN LA LEVADURA SACCHAROMYCES CEREVISIAE (TRANSLUCENT-2)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2008-04188-C03-03/ES/REGULACION DE LOS FLUJOS DE CATIONES COMO DETERMINANTES DE TOLERANCIA SALINA EN LEVADURAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2011-30197-C03-03/ES/PAPEL DEL TRAFICO DE PROTEINAS EN LA HOMEOSTASIS DE IONES Y NUTRIENTES EN LEVADURA Y PLANTAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2008-04188-C03-01/ES/VIAS DE TRANSDUCCION DE SEÑAL QUE CONTROLAN LA HOMEOSTASIS DE IONES Y NUTRIENTES EN LEVADURAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Kahm, M.; Navarrete, C.; Llopis Torregrosa, V.; Herrera, R.; Barreto, L.; Yenush, L.; Ariño, J.... (2012). Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling. PLoS Computational Biology. 8(6):1-11. https://doi.org/10.1371/journal.pcbi.1002548 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1371/journal.pcbi.1002548 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 232616
dc.identifier.pmid 22737060 en_EN
dc.identifier.pmcid PMC3380843 en_EN
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Bundesministerium für Bildung und Forschung, Alemania es_ES
dc.contributor.funder Institució Catalana de Recerca i Estudis Avançats es_ES
dc.description.references Blatt, M. R., & Slayman, C. L. (1987). Role of «active» potassium transport in the regulation of cytoplasmic pH by nonanimal cells. Proceedings of the National Academy of Sciences, 84(9), 2737-2741. doi:10.1073/pnas.84.9.2737 es_ES
dc.description.references Rodrı́guez-Navarro, A. (2000). Potassium transport in fungi and plants. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1469(1), 1-30. doi:10.1016/s0304-4157(99)00013-1 es_ES
dc.description.references Arino, J., Ramos, J., & Sychrova, H. (2010). Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiology and Molecular Biology Reviews, 74(1), 95-120. doi:10.1128/mmbr.00042-09 es_ES
dc.description.references Merchan, S., Pedelini, L., Hueso, G., Calzada, A., Serrano, R., & Yenush, L. (2010). Genetic alterations leading to increases in internal potassium concentrations are detrimental for DNA integrity in Saccharomyces cerevisiae. Genes to Cells, 16(2), 152-165. doi:10.1111/j.1365-2443.2010.01472.x es_ES
dc.description.references Buch-Pedersen, M. J., Rudashevskaya, E. L., Berner, T. S., Venema, K., & Palmgren, M. G. (2006). Potassium as an Intrinsic Uncoupler of the Plasma Membrane H+-ATPase. Journal of Biological Chemistry, 281(50), 38285-38292. doi:10.1074/jbc.m604781200 es_ES
dc.description.references Serrano, R. (1983). In vivo glucose activation of the yeast plasma membrane ATPase. FEBS Letters, 156(1), 11-14. doi:10.1016/0014-5793(83)80237-3 es_ES
dc.description.references Ramos, J., Alijo, R., Haro, R., & Rodriguez-Navarro, A. (1994). TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae. Journal of Bacteriology, 176(1), 249-252. doi:10.1128/jb.176.1.249-252.1994 es_ES
dc.description.references Bihler, H., Slayman, C. L., & Bertl, A. (1998). NSC1: a novel high-current inward rectifier for cations in the plasma membrane of Saccharomyces cerevisiae. FEBS Letters, 432(1-2), 59-64. doi:10.1016/s0014-5793(98)00832-1 es_ES
dc.description.references Bañuelos, M. A., Ruiz, M. C., Jiménez, A., Souciet, J.-L., Potier, S., & Ramos, J. (2001). Role of the Nha1 antiporter in regulating K+influx inSaccharomyces cerevisiae. Yeast, 19(1), 9-15. doi:10.1002/yea.799 es_ES
dc.description.references Haro, R., Garciadeblas, B., & Rodriguez-Navarro, A. (1991). A novel P-type ATPase from yeast involved in sodium transport. FEBS Letters, 291(2), 189-191. doi:10.1016/0014-5793(91)81280-l es_ES
dc.description.references Märquez, J., & Serrano, R. (1996). Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast. FEBS Letters, 382(1-2), 89-92. doi:10.1016/0014-5793(96)00157-3 es_ES
dc.description.references Ruiz, A., & Ariño, J. (2007). Function and Regulation of theSaccharomyces cerevisiae ENASodium ATPase System. Eukaryotic Cell, 6(12), 2175-2183. doi:10.1128/ec.00337-07 es_ES
dc.description.references Bertl, A., Slayman, C., & Gradmann, D. (1993). Gating and conductance in an outward-rectifying K+ channel from the plasma membrane of Saccharomyces cerevisiae. The Journal of Membrane Biology, 132(3). doi:10.1007/bf00235737 es_ES
dc.description.references Martínez-Muñoz, G. A., & Peña, A. (2005). In situ study of K+ transport into the vacuole ofSaccharomyces cerevisiae. Yeast, 22(9), 689-704. doi:10.1002/yea.1238 es_ES
dc.description.references López, R., Enríquez, E., & Peña, A. (1999). Effects of weak acids on cation accumulation, ΔpH and ΔΨ in yeast. Yeast, 15(7), 553-562. doi:10.1002/(sici)1097-0061(199905)15:7<553::aid-yea397>3.0.co;2-v es_ES
dc.description.references Muzzey, D., Gómez-Uribe, C. A., Mettetal, J. T., & van Oudenaarden, A. (2009). A Systems-Level Analysis of Perfect Adaptation in Yeast Osmoregulation. Cell, 138(1), 160-171. doi:10.1016/j.cell.2009.04.047 es_ES
dc.description.references Petrezselyova, S., Zahradka, J., & Sychrova, H. (2010). Saccharomyces cerevisiae BY4741 and W303-1A laboratory strains differ in salt tolerance. Fungal Biology, 114(2-3), 144-150. doi:10.1016/j.funbio.2009.11.002 es_ES
dc.description.references Casado, C., Yenush, L., Melero, C., del Carmen Ruiz, M., Serrano, R., Pérez-Valle, J., … Ramos, J. (2010). Regulation of Trk-dependent potassium transport by the calcineurin pathway involves the Hal5 kinase. FEBS Letters, 584(11), 2415-2420. doi:10.1016/j.febslet.2010.04.042 es_ES
dc.description.references Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter. Molecular and Cellular Biology, 19(5), 3328-3337. doi:10.1128/mcb.19.5.3328 es_ES
dc.description.references Yenush, L., Merchan, S., Holmes, J., & Serrano, R. (2005). pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Molecular and Cellular Biology, 25(19), 8683-8692. doi:10.1128/mcb.25.19.8683-8692.2005 es_ES
dc.description.references Boron, W. F. (1976). Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. The Journal of General Physiology, 67(1), 91-112. doi:10.1085/jgp.67.1.91 es_ES
dc.description.references Boron, W. F. (2004). Regulation of intracellular pH. Advances in Physiology Education, 28(4), 160-179. doi:10.1152/advan.00045.2004 es_ES
dc.description.references Yenush, L. (2002). The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. The EMBO Journal, 21(5), 920-929. doi:10.1093/emboj/21.5.920 es_ES
dc.description.references Bihler, H., Slayman, C. L., & Bertl, A. (2002). Low-affinity potassium uptake by Saccharomyces cerevisiae is mediated by NSC1, a calcium-blocked non-specific cation channel. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1558(2), 109-118. doi:10.1016/s0005-2736(01)00414-x es_ES
dc.description.references Serrano, R. (1978). Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae. Molecular and Cellular Biochemistry, 22(1). doi:10.1007/bf00241470 es_ES
dc.description.references Portillo, F., & Serrano, R. (1988). Dissection of functional domains of the yeast proton-pumping ATPase by directed mutagenesis. The EMBO Journal, 7(6), 1793-1798. doi:10.1002/j.1460-2075.1988.tb03010.x es_ES
dc.description.references Vallejo, C. G., & Serrano, R. (1989). Physiology of mutants with reduced expression of plasma membrane H+-ATPase. Yeast, 5(4), 307-319. doi:10.1002/yea.320050411 es_ES
dc.description.references Barreto, L., Canadell, D., Petrezsélyová, S., Navarrete, C., Marešová, L., Peréz-Valle, J., … Ariño, J. (2011). A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae. Eukaryotic Cell, 10(9), 1241-1250. doi:10.1128/ec.05029-11 es_ES
dc.description.references Amoroso, G., Morell-Avrahov, L., Müller, D., Klug, K., & Sültemeyer, D. (2005). The gene NCE103 (YNL036w) from Saccharomyces cerevisiae encodes a functional carbonic anhydrase and its transcription is regulated by the concentration of inorganic carbon in the medium. Molecular Microbiology, 56(2), 549-558. doi:10.1111/j.1365-2958.2005.04560.x es_ES
dc.description.references Barkai, N., & Leibler, S. (1997). Robustness in simple biochemical networks. Nature, 387(6636), 913-917. doi:10.1038/43199 es_ES
dc.description.references Yi, T.-M., Huang, Y., Simon, M. I., & Doyle, J. (2000). Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proceedings of the National Academy of Sciences, 97(9), 4649-4653. doi:10.1073/pnas.97.9.4649 es_ES
dc.description.references Miranda, M., Bashi, E., Vylkova, S., Edgerton, M., Slayman, C., & Rivetta, A. (2009). Conservation and dispersion of sequence and function in fungal TRK potassium transporters: focus onCandida albicans. FEMS Yeast Research, 9(2), 278-292. doi:10.1111/j.1567-1364.2008.00471.x es_ES
dc.description.references Johansson, I., & Blatt, M. R. (2006). Interactive domains between pore loops of the yeast K+ channel TOK1 associate with extracellular K+ sensitivity. Biochemical Journal, 393(3), 645-655. doi:10.1042/bj20051380 es_ES
dc.description.references Kuroda, T., Bihler, H., Bashi, E., Slayman, C. L., & Rivetta, A. (2004). Chloride Channel Function in the Yeast TRK-Potassium Transporters. Journal of Membrane Biology, 198(3), 177-192. doi:10.1007/s00232-004-0671-1 es_ES
dc.description.references Ohgaki, R., Nakamura, N., Mitsui, K., & Kanazawa, H. (2005). Characterization of the ion transport activity of the budding yeast Na+/H+ antiporter, Nha1p, using isolated secretory vesicles. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1712(2), 185-196. doi:10.1016/j.bbamem.2005.03.011 es_ES
dc.description.references Endresen, L. P., Hall, K., Høye, J. S., & Myrheim, J. (2000). A theory for the membrane potential of living cells. European Biophysics Journal, 29(2), 90-103. doi:10.1007/s002490050254 es_ES
dc.description.references Edgar, R. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207-210. doi:10.1093/nar/30.1.207 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem