- -

Size-controlled photochemical synthesis of niobium nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Size-controlled photochemical synthesis of niobium nanoparticles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Malyshev, Dimitriy es_ES
dc.contributor.author Bosca Mayans, Francisco es_ES
dc.contributor.author Crites, Charles-Oneil L. es_ES
dc.contributor.author Hallett-Tapley, Geniece L. es_ES
dc.contributor.author Netto-Ferreira, José Carlos es_ES
dc.contributor.author Alarcon, Emilio I. es_ES
dc.contributor.author Scaiano, Juan C. es_ES
dc.date.accessioned 2014-12-02T08:38:07Z
dc.date.available 2014-12-02T08:38:07Z
dc.date.issued 2013
dc.identifier.issn 1477-9226
dc.identifier.uri http://hdl.handle.net/10251/45086
dc.description.abstract The size of photochemically-prepared niobium nanoparticles (NbNP) can be controlled by varying the concentration of the photoinitiator in the reaction mixture. The particles, which may be metallic in nature, are readily oxidized upon air exposure to form stable niobium(V) oxide nanoparticles (NbONP) that act as strong Bronsted acids. es_ES
dc.description.sponsorship We acknowledge the Natural Sciences and Engineering Research Council of Canada for support. J.C.N.-F. acknowledges the University of Ottawa for a Visiting Professor fellowship and F.B. acknowledges support from the Spanish Government (CTQ2010-19909 and a fellowship). We would like to thank Dr Yun Liu for help with SEM and TEM imaging and Y. Liu and P. Concepcion for help with XPS interpretation, S. Mommers for help with XPS analysis and A. Khetani for help with Raman spectroscopy. We thank one of the referees whose critical and educational comments led to a reinterpretation of the XPS data. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Dalton Transactions es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Passivated gold nanoparticles es_ES
dc.subject Photoacid generation es_ES
dc.subject Induced fusion es_ES
dc.subject Oxidation es_ES
dc.subject Catalyst es_ES
dc.subject Radicals es_ES
dc.subject Growth es_ES
dc.subject Light es_ES
dc.subject XPS es_ES
dc.title Size-controlled photochemical synthesis of niobium nanoparticles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3dt51167g
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2010-19909/ES/MECANISMOS IMPLICADOS EN LA FOTO-REACTIVIDAD ENTRE FARMACOS CON PROPIEDADES ANTINEOPLASICAS Y SUS BIOMOLECULAS DIANA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Malyshev, D.; Bosca Mayans, F.; Crites, CL.; Hallett-Tapley, GL.; Netto-Ferreira, JC.; Alarcon, EI.; Scaiano, JC. (2013). Size-controlled photochemical synthesis of niobium nanoparticles. Dalton Transactions. 42(39):14049-14052. https://doi.org/10.1039/c3dt51167g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c3dt51167g es_ES
dc.description.upvformatpinicio 14049 es_ES
dc.description.upvformatpfin 14052 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.description.issue 39 es_ES
dc.relation.senia 263148
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Natural Sciences and Engineering Research Council of Canada es_ES
dc.contributor.funder University of Ottawa es_ES
dc.description.references McGilvray, K. L., Granger, J., Correia, M., Banks, J. T., & Scaiano, J. C. (2011). Opportunistic use of tetrachloroaurate photolysis in the generation of reductive species for the production of gold nanostructures. Physical Chemistry Chemical Physics, 13(25), 11914. doi:10.1039/c1cp20308h es_ES
dc.description.references Scaiano, J. C., Stamplecoskie, K. G., & Hallett-Tapley, G. L. (2012). Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chemical Communications, 48(40), 4798. doi:10.1039/c2cc30615h es_ES
dc.description.references Scaiano, J. C., Netto-Ferreira, J. C., Alarcon, E., Billone, P., Alejo, C. J. B., Crites, C.-O. L., … Wee, T.-L. (2011). Tuning plasmon transitions and their applications in organic photochemistry. Pure and Applied Chemistry, 83(4), 913-930. doi:10.1351/pac-con-11-01-09 es_ES
dc.description.references McGilvray, K. L., Decan, M. R., Wang, D., & Scaiano, J. C. (2006). Facile Photochemical Synthesis of Unprotected Aqueous Gold Nanoparticles. Journal of the American Chemical Society, 128(50), 15980-15981. doi:10.1021/ja066522h es_ES
dc.description.references Niidome, Y., Hori, A., Sato, T., & Yamada, S. (2000). Enormous Size Growth of Thiol-passivated Gold Nanoparticles Induced by Near-IR Laser Light. Chemistry Letters, 29(4), 310-311. doi:10.1246/cl.2000.310 es_ES
dc.description.references Takahashi, H., Niidome, Y., Sato, T., & Yamada, S. (2004). Effects of capping thiols on the laser-induced fusion of gold nanoparticles and deposition onto glass substrates in cyclohexane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 247(1-3), 105-113. doi:10.1016/j.colsurfa.2004.08.023 es_ES
dc.description.references Pocoví-Martínez, S., Parreño-Romero, M., Agouram, S., & Pérez-Prieto, J. (2011). Controlled UV−C Light-Induced Fusion of Thiol-Passivated Gold Nanoparticles⊥. Langmuir, 27(9), 5234-5241. doi:10.1021/la2000443 es_ES
dc.description.references Kell, A. J., Alizadeh, A., Yang, L., & Workentin, M. S. (2005). Monolayer-Protected Gold Nanoparticle Coalescence Induced by Photogenerated Radicals. Langmuir, 21(21), 9741-9746. doi:10.1021/la051655m es_ES
dc.description.references Consuelo Cuquerella, M., Pocoví-Martínez, S., & Pérez-Prieto, J. (2010). Photocatalytic Coalescence of Functionalized Gold Nanoparticles. Langmuir, 26(3), 1548-1550. doi:10.1021/la9040503 es_ES
dc.description.references Scaiano, J. C., & Stamplecoskie, K. (2013). Can Surface Plasmon Fields Provide a New Way to Photosensitize Organic Photoreactions? From Designer Nanoparticles to Custom Applications. The Journal of Physical Chemistry Letters, 4(7), 1177-1187. doi:10.1021/jz400002a es_ES
dc.description.references Wayner, D. D. M., Dannenberg, J. J., & Griller, D. (1986). Oxidation potentials of α-aminoalkyl radicals: bond dissociation energies for related radical cations. Chemical Physics Letters, 131(3), 189-191. doi:10.1016/0009-2614(86)80542-5 es_ES
dc.description.references Wayner, D. D. M., McPhee, D. J., & Griller, D. (1988). Oxidation and reduction potentials of transient free radicals. Journal of the American Chemical Society, 110(1), 132-137. doi:10.1021/ja00209a021 es_ES
dc.description.references Aufray, M., Menuel, S., Fort, Y., Eschbach, J., Rouxel, D., & Vincent, B. (2009). New Synthesis of Nanosized Niobium Oxides and Lithium Niobate Particles and Their Characterization by XPS Analysis. Journal of Nanoscience and Nanotechnology, 9(8), 4780-4785. doi:10.1166/jnn.2009.1087 es_ES
dc.description.references Grundner, M., & Halbritter, J. (1980). XPS and AES studies on oxide growth and oxide coatings on niobium. Journal of Applied Physics, 51(1), 397-405. doi:10.1063/1.327386 es_ES
dc.description.references Wee, T.-L., Sherman, B. D., Gust, D., Moore, A. L., Moore, T. A., Liu, Y., & Scaiano, J. C. (2011). Photochemical Synthesis of a Water Oxidation Catalyst Based on Cobalt Nanostructures. Journal of the American Chemical Society, 133(42), 16742-16745. doi:10.1021/ja206280g es_ES
dc.description.references Nowak, I., & Ziolek, M. (1999). Niobium Compounds:  Preparation, Characterization, and Application in Heterogeneous Catalysis. Chemical Reviews, 99(12), 3603-3624. doi:10.1021/cr9800208 es_ES
dc.description.references Nair, G. S., Adrijanto, E., Alsalme, A., Kozhevnikov, I. V., Cooke, D. J., Brown, D. R., & Shiju, N. R. (2012). Glycerol utilization: solvent-free acetalisation over niobia catalysts. Catalysis Science & Technology, 2(6), 1173. doi:10.1039/c2cy00335j es_ES
dc.description.references Marzo, M., Gervasini, A., & Carniti, P. (2012). Hydrolysis of disaccharides over solid acid catalysts under green conditions. Carbohydrate Research, 347(1), 23-31. doi:10.1016/j.carres.2011.10.018 es_ES
dc.description.references Billone, P. S., Park, J. M., Blackwell, J. M., Bristol, R., & Scaiano, J. C. (2010). Two-Photon Acid Generation in Thin Polymer Films. Photoinduced Electron Transfer As a Promising Tool for Subwavelength Lithography. Chemistry of Materials, 22(1), 15-17. doi:10.1021/cm903313j es_ES
dc.description.references Pohlers, G., Scaiano, J. C., & Sinta, R. (1997). A Novel Photometric Method for the Determination of Photoacid Generation Efficiencies Using Benzothiazole and Xanthene Dyes as Acid Sensors. Chemistry of Materials, 9(12), 3222-3230. doi:10.1021/cm970587p es_ES
dc.description.references Feke, G. D., Grober, R. D., Pohlers, G., Moore, K., & Cameron, J. F. (2001). On-Wafer Spectrofluorometric Method for Determination of Relative Quantum Yields of Photoacid Generation in Chemically Amplified Resists. Analytical Chemistry, 73(14), 3472-3480. doi:10.1021/ac0015319 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem