Mostrar el registro sencillo del ítem
dc.contributor.author | Malyshev, Dimitriy | es_ES |
dc.contributor.author | Bosca Mayans, Francisco | es_ES |
dc.contributor.author | Crites, Charles-Oneil L. | es_ES |
dc.contributor.author | Hallett-Tapley, Geniece L. | es_ES |
dc.contributor.author | Netto-Ferreira, José Carlos | es_ES |
dc.contributor.author | Alarcon, Emilio I. | es_ES |
dc.contributor.author | Scaiano, Juan C. | es_ES |
dc.date.accessioned | 2014-12-02T08:38:07Z | |
dc.date.available | 2014-12-02T08:38:07Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1477-9226 | |
dc.identifier.uri | http://hdl.handle.net/10251/45086 | |
dc.description.abstract | The size of photochemically-prepared niobium nanoparticles (NbNP) can be controlled by varying the concentration of the photoinitiator in the reaction mixture. The particles, which may be metallic in nature, are readily oxidized upon air exposure to form stable niobium(V) oxide nanoparticles (NbONP) that act as strong Bronsted acids. | es_ES |
dc.description.sponsorship | We acknowledge the Natural Sciences and Engineering Research Council of Canada for support. J.C.N.-F. acknowledges the University of Ottawa for a Visiting Professor fellowship and F.B. acknowledges support from the Spanish Government (CTQ2010-19909 and a fellowship). We would like to thank Dr Yun Liu for help with SEM and TEM imaging and Y. Liu and P. Concepcion for help with XPS interpretation, S. Mommers for help with XPS analysis and A. Khetani for help with Raman spectroscopy. We thank one of the referees whose critical and educational comments led to a reinterpretation of the XPS data. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Dalton Transactions | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Passivated gold nanoparticles | es_ES |
dc.subject | Photoacid generation | es_ES |
dc.subject | Induced fusion | es_ES |
dc.subject | Oxidation | es_ES |
dc.subject | Catalyst | es_ES |
dc.subject | Radicals | es_ES |
dc.subject | Growth | es_ES |
dc.subject | Light | es_ES |
dc.subject | XPS | es_ES |
dc.title | Size-controlled photochemical synthesis of niobium nanoparticles | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c3dt51167g | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2010-19909/ES/MECANISMOS IMPLICADOS EN LA FOTO-REACTIVIDAD ENTRE FARMACOS CON PROPIEDADES ANTINEOPLASICAS Y SUS BIOMOLECULAS DIANA/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Malyshev, D.; Bosca Mayans, F.; Crites, CL.; Hallett-Tapley, GL.; Netto-Ferreira, JC.; Alarcon, EI.; Scaiano, JC. (2013). Size-controlled photochemical synthesis of niobium nanoparticles. Dalton Transactions. 42(39):14049-14052. https://doi.org/10.1039/c3dt51167g | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c3dt51167g | es_ES |
dc.description.upvformatpinicio | 14049 | es_ES |
dc.description.upvformatpfin | 14052 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 42 | es_ES |
dc.description.issue | 39 | es_ES |
dc.relation.senia | 263148 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Natural Sciences and Engineering Research Council of Canada | es_ES |
dc.contributor.funder | University of Ottawa | es_ES |
dc.description.references | McGilvray, K. L., Granger, J., Correia, M., Banks, J. T., & Scaiano, J. C. (2011). Opportunistic use of tetrachloroaurate photolysis in the generation of reductive species for the production of gold nanostructures. Physical Chemistry Chemical Physics, 13(25), 11914. doi:10.1039/c1cp20308h | es_ES |
dc.description.references | Scaiano, J. C., Stamplecoskie, K. G., & Hallett-Tapley, G. L. (2012). Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chemical Communications, 48(40), 4798. doi:10.1039/c2cc30615h | es_ES |
dc.description.references | Scaiano, J. C., Netto-Ferreira, J. C., Alarcon, E., Billone, P., Alejo, C. J. B., Crites, C.-O. L., … Wee, T.-L. (2011). Tuning plasmon transitions and their applications in organic photochemistry. Pure and Applied Chemistry, 83(4), 913-930. doi:10.1351/pac-con-11-01-09 | es_ES |
dc.description.references | McGilvray, K. L., Decan, M. R., Wang, D., & Scaiano, J. C. (2006). Facile Photochemical Synthesis of Unprotected Aqueous Gold Nanoparticles. Journal of the American Chemical Society, 128(50), 15980-15981. doi:10.1021/ja066522h | es_ES |
dc.description.references | Niidome, Y., Hori, A., Sato, T., & Yamada, S. (2000). Enormous Size Growth of Thiol-passivated Gold Nanoparticles Induced by Near-IR Laser Light. Chemistry Letters, 29(4), 310-311. doi:10.1246/cl.2000.310 | es_ES |
dc.description.references | Takahashi, H., Niidome, Y., Sato, T., & Yamada, S. (2004). Effects of capping thiols on the laser-induced fusion of gold nanoparticles and deposition onto glass substrates in cyclohexane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 247(1-3), 105-113. doi:10.1016/j.colsurfa.2004.08.023 | es_ES |
dc.description.references | Pocoví-Martínez, S., Parreño-Romero, M., Agouram, S., & Pérez-Prieto, J. (2011). Controlled UV−C Light-Induced Fusion of Thiol-Passivated Gold Nanoparticles⊥. Langmuir, 27(9), 5234-5241. doi:10.1021/la2000443 | es_ES |
dc.description.references | Kell, A. J., Alizadeh, A., Yang, L., & Workentin, M. S. (2005). Monolayer-Protected Gold Nanoparticle Coalescence Induced by Photogenerated Radicals. Langmuir, 21(21), 9741-9746. doi:10.1021/la051655m | es_ES |
dc.description.references | Consuelo Cuquerella, M., Pocoví-Martínez, S., & Pérez-Prieto, J. (2010). Photocatalytic Coalescence of Functionalized Gold Nanoparticles. Langmuir, 26(3), 1548-1550. doi:10.1021/la9040503 | es_ES |
dc.description.references | Scaiano, J. C., & Stamplecoskie, K. (2013). Can Surface Plasmon Fields Provide a New Way to Photosensitize Organic Photoreactions? From Designer Nanoparticles to Custom Applications. The Journal of Physical Chemistry Letters, 4(7), 1177-1187. doi:10.1021/jz400002a | es_ES |
dc.description.references | Wayner, D. D. M., Dannenberg, J. J., & Griller, D. (1986). Oxidation potentials of α-aminoalkyl radicals: bond dissociation energies for related radical cations. Chemical Physics Letters, 131(3), 189-191. doi:10.1016/0009-2614(86)80542-5 | es_ES |
dc.description.references | Wayner, D. D. M., McPhee, D. J., & Griller, D. (1988). Oxidation and reduction potentials of transient free radicals. Journal of the American Chemical Society, 110(1), 132-137. doi:10.1021/ja00209a021 | es_ES |
dc.description.references | Aufray, M., Menuel, S., Fort, Y., Eschbach, J., Rouxel, D., & Vincent, B. (2009). New Synthesis of Nanosized Niobium Oxides and Lithium Niobate Particles and Their Characterization by XPS Analysis. Journal of Nanoscience and Nanotechnology, 9(8), 4780-4785. doi:10.1166/jnn.2009.1087 | es_ES |
dc.description.references | Grundner, M., & Halbritter, J. (1980). XPS and AES studies on oxide growth and oxide coatings on niobium. Journal of Applied Physics, 51(1), 397-405. doi:10.1063/1.327386 | es_ES |
dc.description.references | Wee, T.-L., Sherman, B. D., Gust, D., Moore, A. L., Moore, T. A., Liu, Y., & Scaiano, J. C. (2011). Photochemical Synthesis of a Water Oxidation Catalyst Based on Cobalt Nanostructures. Journal of the American Chemical Society, 133(42), 16742-16745. doi:10.1021/ja206280g | es_ES |
dc.description.references | Nowak, I., & Ziolek, M. (1999). Niobium Compounds: Preparation, Characterization, and Application in Heterogeneous Catalysis. Chemical Reviews, 99(12), 3603-3624. doi:10.1021/cr9800208 | es_ES |
dc.description.references | Nair, G. S., Adrijanto, E., Alsalme, A., Kozhevnikov, I. V., Cooke, D. J., Brown, D. R., & Shiju, N. R. (2012). Glycerol utilization: solvent-free acetalisation over niobia catalysts. Catalysis Science & Technology, 2(6), 1173. doi:10.1039/c2cy00335j | es_ES |
dc.description.references | Marzo, M., Gervasini, A., & Carniti, P. (2012). Hydrolysis of disaccharides over solid acid catalysts under green conditions. Carbohydrate Research, 347(1), 23-31. doi:10.1016/j.carres.2011.10.018 | es_ES |
dc.description.references | Billone, P. S., Park, J. M., Blackwell, J. M., Bristol, R., & Scaiano, J. C. (2010). Two-Photon Acid Generation in Thin Polymer Films. Photoinduced Electron Transfer As a Promising Tool for Subwavelength Lithography. Chemistry of Materials, 22(1), 15-17. doi:10.1021/cm903313j | es_ES |
dc.description.references | Pohlers, G., Scaiano, J. C., & Sinta, R. (1997). A Novel Photometric Method for the Determination of Photoacid Generation Efficiencies Using Benzothiazole and Xanthene Dyes as Acid Sensors. Chemistry of Materials, 9(12), 3222-3230. doi:10.1021/cm970587p | es_ES |
dc.description.references | Feke, G. D., Grober, R. D., Pohlers, G., Moore, K., & Cameron, J. F. (2001). On-Wafer Spectrofluorometric Method for Determination of Relative Quantum Yields of Photoacid Generation in Chemically Amplified Resists. Analytical Chemistry, 73(14), 3472-3480. doi:10.1021/ac0015319 | es_ES |