- -

Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant (Solanum melongena) and its wild ancestor (S. incanum)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant (Solanum melongena) and its wild ancestor (S. incanum)

Mostrar el registro completo del ítem

Prohens Tomás, J.; Whitaker, BD.; Plazas Ávila, MDLO.; Vilanova Navarro, S.; Hurtado Ricart, M.; Blasco Villarroya, M.; Gramazio, P.... (2013). Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant (Solanum melongena) and its wild ancestor (S. incanum). Annals of Applied Biology. 162(2):242-257. https://doi.org/10.1111/aab.12017

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/45124

Ficheros en el ítem

Metadatos del ítem

Título: Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant (Solanum melongena) and its wild ancestor (S. incanum)
Autor: Prohens Tomás, Jaime Whitaker, B. D. Plazas Ávila, María de la O Vilanova Navarro, Santiago Hurtado Ricart, María Blasco Villarroya, Manuel Gramazio, P. Stommel, J. R.
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Fecha difusión:
Resumen:
Solanum incanum, the wild ancestor of eggplant, Solanum melongena, has been considered as a source of variation for high content of phenolic acid conjugates in breeding programmes aimed at improving the functional quality ...[+]
Palabras clave: Breeding , Characterisation , Chlorogenic acid , Functional quality , Interspecific hybridisation , Introgression
Derechos de uso: Cerrado
Fuente:
Annals of Applied Biology. (issn: 0003-4746 )
DOI: 10.1111/aab.12017
Editorial:
Association of Applied Biologists
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//AGL2009-07257/ES/MEJORA GENETICA DE LA CALIDAD NUTRECEUTICA DE LA BERENJENA/
info:eu-repo/grantAgreement/MICINN//RF2008-00008-00-00/ES/Regeneración, caracterización y documentación de recursos genéticos de berenjena/
Agradecimientos:
This work was partially financed by the Ministerio de Ciencia y Tecnologia (AGL2009-07257 and RF-2008-00008-00-00).
Tipo: Artículo

References

Akanitapichat, P., Phraibung, K., Nuchklang, K., & Prompitakkul, S. (2010). Antioxidant and hepatoprotective activities of five eggplant varieties. Food and Chemical Toxicology, 48(10), 3017-3021. doi:10.1016/j.fct.2010.07.045

Azuma, K., Ohyama, A., Ippoushi, K., Ichiyanagi, T., Takeuchi, A., Saito, T., & Fukuoka, H. (2008). Structures and Antioxidant Activity of Anthocyanins in Many Accessions of Eggplant and Its Related Species. Journal of Agricultural and Food Chemistry, 56(21), 10154-10159. doi:10.1021/jf801322m

Bassard, J.-E., Ullmann, P., Bernier, F., & Werck-Reichhart, D. (2010). Phenolamides: Bridging polyamines to the phenolic metabolism. Phytochemistry, 71(16), 1808-1824. doi:10.1016/j.phytochem.2010.08.003 [+]
Akanitapichat, P., Phraibung, K., Nuchklang, K., & Prompitakkul, S. (2010). Antioxidant and hepatoprotective activities of five eggplant varieties. Food and Chemical Toxicology, 48(10), 3017-3021. doi:10.1016/j.fct.2010.07.045

Azuma, K., Ohyama, A., Ippoushi, K., Ichiyanagi, T., Takeuchi, A., Saito, T., & Fukuoka, H. (2008). Structures and Antioxidant Activity of Anthocyanins in Many Accessions of Eggplant and Its Related Species. Journal of Agricultural and Food Chemistry, 56(21), 10154-10159. doi:10.1021/jf801322m

Bassard, J.-E., Ullmann, P., Bernier, F., & Werck-Reichhart, D. (2010). Phenolamides: Bridging polyamines to the phenolic metabolism. Phytochemistry, 71(16), 1808-1824. doi:10.1016/j.phytochem.2010.08.003

Bradfield, M., & Stamp, N. (2004). Effect of Nighttime Temperature on Tomato Plant Defensive Chemistry. Journal of Chemical Ecology, 30(9), 1713-1721. doi:10.1023/b:joec.0000042397.42061.9f

Cao, G., Sofic, E., & Prior, R. L. (1996). Antioxidant Capacity of Tea and Common Vegetables. Journal of Agricultural and Food Chemistry, 44(11), 3426-3431. doi:10.1021/jf9602535

Cho, A.-S., Jeon, S.-M., Kim, M.-J., Yeo, J., Seo, K.-I., Choi, M.-S., & Lee, M.-K. (2010). Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food and Chemical Toxicology, 48(3), 937-943. doi:10.1016/j.fct.2010.01.003

Clé, C., Hill, L. M., Niggeweg, R., Martin, C. R., Guisez, Y., Prinsen, E., & Jansen, M. A. K. (2008). Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry, 69(11), 2149-2156. doi:10.1016/j.phytochem.2008.04.024

COMAN, C., RUGINA, O. D., & SOCACIU, C. (2012). Plants and Natural Compounds with Antidiabetic Action. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1), 314. doi:10.15835/nbha4017205

Comino, C., Hehn, A., Moglia, A., Menin, B., Bourgaud, F., Lanteri, S., & Portis, E. (2009). The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway. BMC Plant Biology, 9(1), 30. doi:10.1186/1471-2229-9-30

Dai, J., & Mumper, R. J. (2010). Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules, 15(10), 7313-7352. doi:10.3390/molecules15107313

Do, C.-T., Pollet, B., Thévenin, J., Sibout, R., Denoue, D., Barrière, Y., … Jouanin, L. (2007). Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta, 226(5), 1117-1129. doi:10.1007/s00425-007-0558-3

Fita, A., Tarín, N., Prohens, J., & Rodríguez-Burruezo, A. (2010). A Software Tool for Teaching Backcross Breeding Simulation. HortTechnology, 20(6), 1049-1053. doi:10.21273/hortsci.20.6.1049

Frary, A., Doganlar, S., Daunay, M. C., & Tanksley, S. D. (2003). QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. Theoretical and Applied Genetics, 107(2), 359-370. doi:10.1007/s00122-003-1257-5

Friedman, M., & Jürgens, H. S. (2000). Effect of pH on the Stability of Plant Phenolic Compounds. Journal of Agricultural and Food Chemistry, 48(6), 2101-2110. doi:10.1021/jf990489j

Fukuhara, K., & Kubo, I. (1991). Isolation of steroidal glycoalkaloids from Solanum incanum by two countercurrent chromatographic methods. Phytochemistry, 30(2), 685-687. doi:10.1016/0031-9422(91)83753-8

Gisbert, C., Prohens, J., Raigón, M. D., Stommel, J. R., & Nuez, F. (2011). Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Scientia Horticulturae, 128(1), 14-22. doi:10.1016/j.scienta.2010.12.007

Hanson, P. M., Yang, R.-Y., Tsou, S. C. S., Ledesma, D., Engle, L., & Lee, T.-C. (2006). Diversity in eggplant (Solanum melongena) for superoxide scavenging activity, total phenolics, and ascorbic acid. Journal of Food Composition and Analysis, 19(6-7), 594-600. doi:10.1016/j.jfca.2006.03.001

Jenks, M. A., & Bebeli, P. J. (Eds.). (2011). Breeding for Fruit Quality. doi:10.1002/9780470959350

Kwon, Y.-I., Apostolidis, E., & Shetty, K. (2008). In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresource Technology, 99(8), 2981-2988. doi:10.1016/j.biortech.2007.06.035

Ky, C.-L., Louarn, J., Guyot, B., Charrier, A., Hamon, S., & Noirot, M. (1999). Relations between and inheritance of chlorogenic acid contents in an interspecific cross between Coffea pseudozanguebariae and Coffea liberica var ‘dewevrei’. Theoretical and Applied Genetics, 98(3-4), 628-637. doi:10.1007/s001220051114

Lee, W. J., & Zhu, B. T. (2005). Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis, 27(2), 269-277. doi:10.1093/carcin/bgi206

Lester, R. N. (1986). TAXONOMY OF SCARLET EGGPLANTS, SOLANUM AETHIOPICUM L. Acta Horticulturae, (182), 125-132. doi:10.17660/actahortic.1986.182.15

Lo Scalzo, R., Fibiani, M., Mennella, G., Rotino, G. L., Dal Sasso, M., Culici, M., … Braga, P. C. (2010). Thermal Treatment of Eggplant (Solanum melongenaL.) Increases the Antioxidant Content and the Inhibitory Effect on Human Neutrophil Burst. Journal of Agricultural and Food Chemistry, 58(6), 3371-3379. doi:10.1021/jf903881s

López-Gresa, M. P., Torres, C., Campos, L., Lisón, P., Rodrigo, I., Bellés, J. M., & Conejero, V. (2011). Identification of defence metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae. Environmental and Experimental Botany, 74, 216-228. doi:10.1016/j.envexpbot.2011.06.003

Luthria, D., Singh, A. P., Wilson, T., Vorsa, N., Banuelos, G. S., & Vinyard, B. T. (2010). Influence of conventional and organic agricultural practices on the phenolic content in eggplant pulp: Plant-to-plant variation. Food Chemistry, 121(2), 406-411. doi:10.1016/j.foodchem.2009.12.055

Ma, C., Whitaker, B. D., & Kennelly, E. J. (2010). New 5-O-Caffeoylquinic Acid Derivatives in Fruit of the Wild Eggplant RelativeSolanum viarum. Journal of Agricultural and Food Chemistry, 58(20), 11036-11042. doi:10.1021/jf102963f

Ma, C., Dastmalchi, K., Whitaker, B. D., & Kennelly, E. J. (2011). Two New Antioxidant Malonated Caffeoylquinic Acid Isomers in Fruits of Wild Eggplant Relatives. Journal of Agricultural and Food Chemistry, 59(17), 9645-9651. doi:10.1021/jf202028y

Mather, K., & Jinks, J. L. (1977). Introduction to Biometrical Genetics. doi:10.1007/978-94-009-5787-9

McDougall, B., King, P. J., Wu, B. W., Hostomsky, Z., Reinecke, M. G., & Robinson, W. E. (1998). Dicaffeoylquinic and Dicaffeoyltartaric Acids Are Selective Inhibitors of Human Immunodeficiency Virus Type 1 Integrase. Antimicrobial Agents and Chemotherapy, 42(1), 140-146. doi:10.1128/aac.42.1.140

Mennella, G., Rotino, G. L., Fibiani, M., D’Alessandro, A., Francese, G., Toppino, L., … Lo Scalzo, R. (2010). Characterization of Health-Related Compounds in Eggplant (Solanum melongenaL.) Lines Derived from Introgression of Allied Species. Journal of Agricultural and Food Chemistry, 58(13), 7597-7603. doi:10.1021/jf101004z

Meyer, R. S., Karol, K. G., Little, D. P., Nee, M. H., & Litt, A. (2012). Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Molecular Phylogenetics and Evolution, 63(3), 685-701. doi:10.1016/j.ympev.2012.02.006

Okmen, B., Sigva, H. O., Mutlu, S., Doganlar, S., Yemenicioglu, A., & Frary, A. (2009). Total Antioxidant Activity and Total Phenolic Contents in Different Turkish Eggplant (Solanum Melongena L.) Cultivars. International Journal of Food Properties, 12(3), 616-624. doi:10.1080/10942910801992942

Paran, I., & van der Knaap, E. (2007). Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. Journal of Experimental Botany, 58(14), 3841-3852. doi:10.1093/jxb/erm257

Prabhu, M., Natarajan, S., Veeraragavathatham, D., & Pugalendhi, L. (2009). The biochemical basis of shoot and fruit borer resistance in interspecific progenies of brinjal (Solanum melongena). EurAsian Journal of Biosciences, 50-57. doi:10.5053/ejobios.2009.3.0.7

Prohens, J., Blanca, J. M., & Nuez, F. (2005). Morphological and Molecular Variation in a Collection of Eggplants from a Secondary Center of Diversity: Implications for Conservation and Breeding. Journal of the American Society for Horticultural Science, 130(1), 54-63. doi:10.21273/jashs.130.1.54

Prohens, J., Rodríguez-Burruezo, A., Raigón, M. D., & Nuez, F. (2007). Total Phenolic Concentration and Browning Susceptibility in a Collection of Different Varietal Types and Hybrids of Eggplant: Implications for Breeding for Higher Nutritional Quality and Reduced Browning. Journal of the American Society for Horticultural Science, 132(5), 638-646. doi:10.21273/jashs.132.5.638

Prohens, J., Muñoz-Falcón, J. E., Rodríguez-Burruezo, A., & Nuez, F. (2008). STRATEGIES FOR THE BREEDING OF EGGPLANTS WITH IMPROVED NUTRITIONAL QUALITY. Acta Horticulturae, (767), 285-292. doi:10.17660/actahortic.2008.767.30

Prohens, J., Plazas, M., Raigón, M. D., Seguí-Simarro, J. M., Stommel, J. R., & Vilanova, S. (2012). Characterization of interspecific hybrids and first backcross generations from crosses between two cultivated eggplants (Solanum melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica, 186(2), 517-538. doi:10.1007/s10681-012-0652-x

Queiroz, C., Mendes Lopes, M. L., Fialho, E., & Valente-Mesquita, V. L. (2008). Polyphenol Oxidase: Characteristics and Mechanisms of Browning Control. Food Reviews International, 24(4), 361-375. doi:10.1080/87559120802089332

Dos Santos, M. D., Almeida, M. C., Lopes, N. P., & de Souza, G. E. P. (2006). Evaluation of the Anti-inflammatory, Analgesic and Antipyretic Activities of the Natural Polyphenol Chlorogenic Acid. Biological & Pharmaceutical Bulletin, 29(11), 2236-2240. doi:10.1248/bpb.29.2236

Sawa, T., Nakao, M., Akaike, T., Ono, K., & Maeda, H. (1999). Alkylperoxyl Radical-Scavenging Activity of Various Flavonoids and Other Phenolic Compounds:  Implications for the Anti-Tumor-Promoter Effect of Vegetables. Journal of Agricultural and Food Chemistry, 47(2), 397-402. doi:10.1021/jf980765e

Singh, A. P., Luthria, D., Wilson, T., Vorsa, N., Singh, V., Banuelos, G. S., & Pasakdee, S. (2009). Polyphenols content and antioxidant capacity of eggplant pulp. Food Chemistry, 114(3), 955-961. doi:10.1016/j.foodchem.2008.10.048

Stommel, J. R., & Whitaker, B. D. (2003). Phenolic Acid Content and Composition of Eggplant Fruit in a Germplasm Core Subset. Journal of the American Society for Horticultural Science, 128(5), 704-710. doi:10.21273/jashs.128.5.0704

Triantis, T., Stelakis, A., Dimotikali, D., & Papadopoulos, K. (2005). Investigations on the antioxidant activity of fruit and vegetable aqueous extracts on superoxide radical anion using chemiluminescence techniques. Analytica Chimica Acta, 536(1-2), 101-105. doi:10.1016/j.aca.2004.11.048

Van der Weerden, G. M., & Barendse, G. W. M. (2007). A WEB-BASED SEARCHABLE DATABASE DEVELOPED FOR THE EGGNET PROJECT AND APPLIED TO THE RADBOUD UNIVERSITY SOLANACEAE DATABASE. Acta Horticulturae, (745), 503-506. doi:10.17660/actahortic.2007.745.37

Weese, T. L., & Bohs, L. (2010). Eggplant origins: Out of Africa, into the Orient. TAXON, 59(1), 49-56. doi:10.1002/tax.591006

Whitaker, B. D., & Stommel, J. R. (2003). Distribution of Hydroxycinnamic Acid Conjugates in Fruit of Commercial Eggplant (Solanum melongenaL.) Cultivars. Journal of Agricultural and Food Chemistry, 51(11), 3448-3454. doi:10.1021/jf026250b

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem