Mostrar el registro sencillo del ítem
dc.contributor.author | Roldán Blay, Carlos | es_ES |
dc.contributor.author | Escrivá-Escrivá, Guillermo | es_ES |
dc.contributor.author | Álvarez Bel, Carlos María | es_ES |
dc.contributor.author | Roldán Porta, Carlos | es_ES |
dc.contributor.author | Rodriguez-Garcia, Javier | es_ES |
dc.date.accessioned | 2014-12-04T11:19:59Z | |
dc.date.available | 2014-12-04T11:19:59Z | |
dc.date.issued | 2013-05 | |
dc.identifier.issn | 0378-7788 | |
dc.identifier.uri | http://hdl.handle.net/10251/45164 | |
dc.description.abstract | This paper presents the upgrading of a method for predicting short-term building energy consumption that was previously developed by the authors (EUs method). The upgrade uses a time temperature curve (TTC) forecast model. The EUs method involves the use of artificial neural networks (ANNs) for predicting each independent process end-uses (EUs). End-uses consume energy with a specific behaviour in function of certain external variables. The EUs method obtains the total consumption by the addition of the forecasted end-uses. The inputs required for this method are the parameters that may affect consumption, such as temperature, type of day, etc. Historical data of the total consumption and the consumption of each end-use are also required. A model for prediction of the time temperature curve has been developed for the new forecast method (TEUs method). The temperature at each moment of the day is obtained using the prediction of the maximum and minimum daytime temperature. This provides various benefits when selecting the training days and in the training and forecasting phases, thus improving the relationship between expected consumption and temperatures. The method has been tested and validated with the consumption forecast of the Universitat Politècnica de València for an entire year. | es_ES |
dc.description.sponsorship | This research work has been possible with the support of the Universitat Politecnica de Valencia (Spain) with grant #CE 19990032. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Energy and Buildings | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Temperature curve model | es_ES |
dc.subject | Building energy consumption forecast | es_ES |
dc.subject | Artificial neural networks | es_ES |
dc.subject | Building end-uses | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | Upgrade of an artificial neural network prediction method for electrical consumption forecasting using an hourly temperature curve model | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.enbuild.2012.12.009 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//CE-19990032/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ingeniería Energética - Institut d'Enginyeria Energètica | es_ES |
dc.description.bibliographicCitation | Roldán Blay, C.; Escrivá-Escrivá, G.; Álvarez Bel, CM.; Roldán Porta, C.; Rodriguez-Garcia, J. (2013). Upgrade of an artificial neural network prediction method for electrical consumption forecasting using an hourly temperature curve model. Energy and Buildings. 60:38-46. https://doi.org/10.1016/j.enbuild.2012.12.009 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.enbuild.2012.12.009 | es_ES |
dc.description.upvformatpinicio | 38 | es_ES |
dc.description.upvformatpfin | 46 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 60 | es_ES |
dc.relation.senia | 233759 | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |