- -

Upgrade of an artificial neural network prediction method for electrical consumption forecasting using an hourly temperature curve model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Upgrade of an artificial neural network prediction method for electrical consumption forecasting using an hourly temperature curve model

Mostrar el registro completo del ítem

Roldán Blay, C.; Escrivá-Escrivá, G.; Álvarez Bel, CM.; Roldán Porta, C.; Rodriguez-Garcia, J. (2013). Upgrade of an artificial neural network prediction method for electrical consumption forecasting using an hourly temperature curve model. Energy and Buildings. 60:38-46. https://doi.org/10.1016/j.enbuild.2012.12.009

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/45164

Ficheros en el ítem

Metadatos del ítem

Título: Upgrade of an artificial neural network prediction method for electrical consumption forecasting using an hourly temperature curve model
Autor: Roldán Blay, Carlos Escrivá-Escrivá, Guillermo Álvarez Bel, Carlos María Roldán Porta, Carlos Rodriguez-Garcia, Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Universitat Politècnica de València. Instituto de Ingeniería Energética - Institut d'Enginyeria Energètica
Fecha difusión:
Resumen:
This paper presents the upgrading of a method for predicting short-term building energy consumption that was previously developed by the authors (EUs method). The upgrade uses a time temperature curve (TTC) forecast model. ...[+]
Palabras clave: Temperature curve model , Building energy consumption forecast , Artificial neural networks , Building end-uses
Derechos de uso: Reserva de todos los derechos
Fuente:
Energy and Buildings. (issn: 0378-7788 )
DOI: 10.1016/j.enbuild.2012.12.009
Editorial:
Elsevier
Versión del editor: http://dx.doi.org/10.1016/j.enbuild.2012.12.009
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//CE-19990032/
Agradecimientos:
This research work has been possible with the support of the Universitat Politecnica de Valencia (Spain) with grant #CE 19990032.
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem