dc.contributor.author |
Alcaraz, Raul
|
es_ES |
dc.contributor.author |
Hornero, Fernando
|
es_ES |
dc.contributor.author |
Martinez, Arturo
|
es_ES |
dc.contributor.author |
Rieta, J J
|
es_ES |
dc.date.accessioned |
2014-12-04T17:57:44Z |
|
dc.date.available |
2014-12-04T17:57:44Z |
|
dc.date.issued |
2012-06 |
|
dc.identifier.issn |
0967-3334 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/45191 |
|
dc.description.abstract |
This paper proposes the first non-invasive method for direct and short-time regularity quantification of atrial fibrillatory (f) waves from the surface ECG in atrial fibrillation (AF). Regularity is estimated by computing individual morphological variations among f waves, which are delineated and extracted from the atrial activity (AA) signal, making use of an adaptive signed correlation index. The algorithm was tested on real AF surface recordings in order to discriminate atrial signals with different organization degrees, providing a notably higher global accuracy (90.3%) than the two non-invasive AF organization estimates defined to date: the dominant atrial frequency (70.5%) and sample entropy (76.1%). Furthermore, due to its ability to assess AA regularity wave to wave, the proposed method is also able to pursue AF organization time course more precisely than the aforementioned indices. As a consequence, this work opens a new perspective in the non-invasive analysis of AF, such as the individualized study of each f wave, that could improve the understanding of AF mechanisms and become useful for its clinical treatment. |
es_ES |
dc.description.sponsorship |
The authors are grateful to Drs Javier Vinas, Elio Martin and Alejandro Vazquez for their contribution to classify blindly the AF episodes used in this work. This work was supported by the projects TEC2010-20633 from the Spanish Ministry of Science and Innovation and PPII11-0194-8121 and PII1C09-0036-3237 from Junta de Comunidades de Castilla-La Mancha. |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
IOP Publishing: Hybrid Open Access |
es_ES |
dc.relation.ispartof |
Physiological Measurement |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Atrial fibrillation |
es_ES |
dc.subject |
ECG |
es_ES |
dc.subject |
Fibrillatory wave regularity |
es_ES |
dc.subject |
Signal processing |
es_ES |
dc.subject |
Waveform morphology |
es_ES |
dc.subject.classification |
TECNOLOGIA ELECTRONICA |
es_ES |
dc.title |
Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1088/0967-3334/33/6/969 |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/MICINN//TEC2010-20633/ES/DESARROLLO Y APLICACION DE ESTIMADORES AVANZADOS DE ORGANIZACION PARA LA CLASIFICACION TERAPEUTICA Y EL SEGUIMIENTO DE PACIENTES CON FIBRILACION AURICULAR/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PII1C09-0036-3237/ES/Predicción De Riesgo De Muerte Súbita Tras Infarto De Miocardio Mediante Técnicas Avanzadas De Procesado Digital De Señal/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PPII11-0194-8121]/ES/PPII11-0194-8121]/ |
es_ES |
dc.rights.accessRights |
Cerrado |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Grupo de ingeniería en bioseñales e imagen radiológica |
es_ES |
dc.description.bibliographicCitation |
Alcaraz, R.; Hornero, F.; Martinez, A.; Rieta, JJ. (2012). Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation. Physiological Measurement. 33(6):969-984. https://doi.org/10.1088/0967-3334/33/6/969 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.1088/0967-3334/33/6/969 |
es_ES |
dc.description.upvformatpinicio |
969 |
es_ES |
dc.description.upvformatpfin |
984 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
33 |
es_ES |
dc.description.issue |
6 |
es_ES |
dc.relation.senia |
239033 |
|
dc.contributor.funder |
Ministerio de Ciencia e Innovación |
es_ES |
dc.description.references |
Alcaraz, R., Abásolo, D., Hornero, R., & Rieta, J. J. (2010). Optimal parameters study for sample entropy-based atrial fibrillation organization analysis. Computer Methods and Programs in Biomedicine, 99(1), 124-132. doi:10.1016/j.cmpb.2010.02.009 |
es_ES |
dc.description.references |
Alcaraz, R., Hornero, F., & Rieta, J. J. (2010). Assessment of non-invasive time and frequency atrial fibrillation organization markers with unipolar atrial electrograms. Physiological Measurement, 32(1), 99-114. doi:10.1088/0967-3334/32/1/007 |
es_ES |
dc.description.references |
Alcaraz, R., & Rieta, J. J. (2008). Adaptive singular value cancelation of ventricular activity in single-lead atrial fibrillation electrocardiograms. Physiological Measurement, 29(12), 1351-1369. doi:10.1088/0967-3334/29/12/001 |
es_ES |
dc.description.references |
Alcaraz, R., & Rieta, J. J. (2010). A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms. Biomedical Signal Processing and Control, 5(1), 1-14. doi:10.1016/j.bspc.2009.11.001 |
es_ES |
dc.description.references |
Bollmann, A., Husser, D., Mainardi, L., Lombardi, F., Langley, P., Murray, A., … Sörnmo, L. (2006). Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications. EP Europace, 8(11), 911-926. doi:10.1093/europace/eul113 |
es_ES |
dc.description.references |
Bollmann, A. (1999). Non-invasive assessment of fibrillatory activity in patients with paroxysmal and persistent atrial fibrillation using the Holter ECG. Cardiovascular Research, 44(1), 60-66. doi:10.1016/s0008-6363(99)00156-x |
es_ES |
dc.description.references |
Calcagnini, G., Censi, F., Michelucci, A., & Bartolini, P. (2006). Descriptors of wavefront propagation. IEEE Engineering in Medicine and Biology Magazine, 25(6), 71-78. doi:10.1109/emb-m.2006.250510 |
es_ES |
dc.description.references |
Capucci, A., Biffi, M., Boriani, G., Ravelli, F., Nollo, G., Sabbatani, P., … Magnani, B. (1995). Dynamic Electrophysiological Behavior of Human Atria During Paroxysmal Atrial Fibrillation. Circulation, 92(5), 1193-1202. doi:10.1161/01.cir.92.5.1193 |
es_ES |
dc.description.references |
CAPUCCI, A., RAVELLI, F., NOLLO, G., MONTENERO, A. S., BIEFL, M., & VILLANI, G. Q. (1999). Capture Window in Human Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 10(3), 319-327. doi:10.1111/j.1540-8167.1999.tb00678.x |
es_ES |
dc.description.references |
Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1), 61-68. doi:10.1016/j.medengphy.2008.04.005 |
es_ES |
dc.description.references |
Everett, T. H., Lai-Chow Kok, Vaughn, R. H., Moorman, R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969-978. doi:10.1109/10.942586 |
es_ES |
dc.description.references |
Faes, L., Nollo, G., Antolini, R., Gaita, F., & Ravelli, F. (2002). A method for quantifying atrial fibrillation organization based on wave-morphology similarity. IEEE Transactions on Biomedical Engineering, 49(12), 1504-1513. doi:10.1109/tbme.2002.805472 |
es_ES |
dc.description.references |
Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., … Ellenbogen, K. A. (2006). ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation. Circulation, 114(7). doi:10.1161/circulationaha.106.177292 |
es_ES |
dc.description.references |
Fynn, S. P., Todd, D. M., Julian, W., Hobbs, C., Armstrong, K. L., Fitzpatrick, P., & Garratt, C. J. (2003). Effect of Amiodarone on Dispersion of Atrial Refractoriness and Cycle Length in Patients with Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 14(5), 485-491. doi:10.1046/j.1540-8167.2003.02388.x |
es_ES |
dc.description.references |
Goyal, R., Harvey, M., Daoud, E. G., Brinkman, K., Knight, B. P., Bahu, M., … Morady, F. (1996). Effect of Coupling Interval and Pacing Cycle Length on Morphology of Paced Ventricular Complexes. Circulation, 94(11), 2843-2849. doi:10.1161/01.cir.94.11.2843 |
es_ES |
dc.description.references |
Holm, M. (1998). Non-invasive assessment of the atrial cycle length during atrial fibrillation in man: introducing, validating and illustrating a new ECG method. Cardiovascular Research, 38(1), 69-81. doi:10.1016/s0008-6363(97)00289-7 |
es_ES |
dc.description.references |
Hsu, N.-W., Lin, Y.-J., Tai, C.-T., Kao, T., Chang, S.-L., Wongcharoen, W., … Chen, S.-A. (2008). Frequency analysis of the fibrillatory activity from surface ECG lead V1 and intracardiac recordings: implications for mapping of AF. Europace, 10(4), 438-443. doi:10.1093/europace/eun045 |
es_ES |
dc.description.references |
Jalife, J. (2002). Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovascular Research, 54(2), 204-216. doi:10.1016/s0008-6363(02)00223-7 |
es_ES |
dc.description.references |
Konings, K. T., Kirchhof, C. J., Smeets, J. R., Wellens, H. J., Penn, O. C., & Allessie, M. A. (1994). High-density mapping of electrically induced atrial fibrillation in humans. Circulation, 89(4), 1665-1680. doi:10.1161/01.cir.89.4.1665 |
es_ES |
dc.description.references |
Konings, K. T. S., Smeets, J. L. R. M., Penn, O. C., Wellens, H. J. J., & Allessie, M. A. (1997). Configuration of Unipolar Atrial Electrograms During Electrically Induced Atrial Fibrillation in Humans. Circulation, 95(5), 1231-1241. doi:10.1161/01.cir.95.5.1231 |
es_ES |
dc.description.references |
Kupeev, K. Y. (1996). On significant maxima detection: a fine-to-coarse algorithm. Proceedings of 13th International Conference on Pattern Recognition. doi:10.1109/icpr.1996.546831 |
es_ES |
dc.description.references |
Lian, J., Garner, G., Muessig, D., & Lang, V. (2010). A simple method to quantify the morphological similarity between signals. Signal Processing, 90(2), 684-688. doi:10.1016/j.sigpro.2009.07.010 |
es_ES |
dc.description.references |
Maragos, P., & Schafer, R. (1987). Morphological filters--Part I: Their set-theoretic analysis and relations to linear shift-invariant filters. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(8), 1153-1169. doi:10.1109/tassp.1987.1165259 |
es_ES |
dc.description.references |
Maragos, P., & Schafer, R. W. (1990). Morphological systems for multidimensional signal processing. Proceedings of the IEEE, 78(4), 690-710. doi:10.1109/5.54808 |
es_ES |
dc.description.references |
Masè, M., Faes, L., Antolini, R., Scaglione, M., & Ravelli, F. (2005). Quantification of synchronization during atrial fibrillation by Shannon entropy: validation in patients and computer model of atrial arrhythmias. Physiological Measurement, 26(6), 911-923. doi:10.1088/0967-3334/26/6/003 |
es_ES |
dc.description.references |
Matsuo, S., Lellouche, N., Wright, M., Bevilacqua, M., Knecht, S., Nault, I., … Haïssaguerre, M. (2009). Clinical Predictors of Termination and Clinical Outcome of Catheter Ablation for Persistent Atrial Fibrillation. Journal of the American College of Cardiology, 54(9), 788-795. doi:10.1016/j.jacc.2009.01.081 |
es_ES |
dc.description.references |
NG, J., & GOLDBERGER, J. J. (2007). Understanding and Interpreting Dominant Frequency Analysis of AF Electrograms. Journal of Cardiovascular Electrophysiology, 18(6), 680-685. doi:10.1111/j.1540-8167.2007.00832.x |
es_ES |
dc.description.references |
NG, J., KADISH, A. H., & GOLDBERGER, J. J. (2007). Technical Considerations for Dominant Frequency Analysis. Journal of Cardiovascular Electrophysiology, 18(7), 757-764. doi:10.1111/j.1540-8167.2007.00810.x |
es_ES |
dc.description.references |
Nilsson, F., Stridh, M., Bollmann, A., & Sörnmo, L. (2006). Predicting spontaneous termination of atrial fibrillation using the surface ECG. Medical Engineering & Physics, 28(8), 802-808. doi:10.1016/j.medengphy.2005.11.010 |
es_ES |
dc.description.references |
Nollo, G., Marconcini, M., Faes, L., Bovolo, F., Ravelli, F., & Bruzzone, L. (2008). An Automatic System for the Analysis and Classification of Human Atrial Fibrillation Patterns from Intracardiac Electrograms. IEEE Transactions on Biomedical Engineering, 55(9), 2275-2285. doi:10.1109/tbme.2008.923155 |
es_ES |
dc.description.references |
Petrutiu, S., Ng, J., Nijm, G. M., Al-Angari, H., Swiryn, S., & Sahakian, A. V. (2006). Atrial fibrillation and waveform characterization. IEEE Engineering in Medicine and Biology Magazine, 25(6), 24-30. doi:10.1109/emb-m.2006.250505 |
es_ES |
dc.description.references |
Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039 |
es_ES |
dc.description.references |
Richter, U., Bollmann, A., Husser, D., & Stridh, M. (2009). Right atrial organization and wavefront analysis in atrial fibrillation. Medical & Biological Engineering & Computing, 47(12), 1237-1246. doi:10.1007/s11517-009-0540-2 |
es_ES |
dc.description.references |
Rieta, J. J., Castells, F., Sanchez, C., Zarzoso, V., & Millet, J. (2004). Atrial Activity Extraction for Atrial Fibrillation Analysis Using Blind Source Separation. IEEE Transactions on Biomedical Engineering, 51(7), 1176-1186. doi:10.1109/tbme.2004.827272 |
es_ES |
dc.description.references |
Serra, J., & Vincent, L. (1992). An overview of morphological filtering. Circuits Systems and Signal Processing, 11(1), 47-108. doi:10.1007/bf01189221 |
es_ES |
dc.description.references |
Sih, H. J., Zipes, D. P., Berbari, E. J., & Olgin, J. E. (1999). A high-temporal resolution algorithm for quantifying organization during atrial fibrillation. IEEE Transactions on Biomedical Engineering, 46(4), 440-450. doi:10.1109/10.752941 |
es_ES |
dc.description.references |
Stridh, M., & Sommo, L. (2001). Spatiotemporal QRST cancellation techniques for analysis of atrial fibrillation. IEEE Transactions on Biomedical Engineering, 48(1), 105-111. doi:10.1109/10.900266 |
es_ES |
dc.description.references |
Stridh, M., Sornmo, L., Meurling, C. J., & Olsson, S. B. (2004). Sequential Characterization of Atrial Tachyarrhythmias Based on ECG Time-Frequency Analysis. IEEE Transactions on Biomedical Engineering, 51(1), 100-114. doi:10.1109/tbme.2003.820331 |
es_ES |
dc.description.references |
Sun, P., Wu, Q. H., Weindling, A. M., Finkelstein, A., & Ibrahim, K. (2003). An improved morphological approach to background normalization of ECG signals. IEEE Transactions on Biomedical Engineering, 50(1), 117-121. doi:10.1109/tbme.2002.805486 |
es_ES |
dc.description.references |
Sun, Y., Chan, K. L., & Krishnan, S. M. (2005). Characteristic wave detection in ECG signal using morphological transform. BMC Cardiovascular Disorders, 5(1). doi:10.1186/1471-2261-5-28 |
es_ES |
dc.description.references |
SUNG, R. J., & LAUER, M. R. (2005). Atrial Fibrillation: Can We Cure It If We Can’t Explain It? Journal of Cardiovascular Electrophysiology, 16(5), 505-507. doi:10.1111/j.1540-8167.2005.50021.x |
es_ES |
dc.description.references |
VILLANI, G. Q., NOLLO, G., RAVELLI, F., PIEPOLI, M., & CAPUCCI, A. (2002). Capture of Atrial Fibrillation Reduces the Atrial Defibrillation Threshold. Pacing and Clinical Electrophysiology, 25(8), 1159-1165. doi:10.1046/j.1460-9592.2002.01159.x |
es_ES |
dc.description.references |
WELLS, J. L., KARP, R. B., KOUCHOUKOS, N. T., MACLEAN, W. A. H., JAMES, T. N., & WALDO, A. L. (1978). Characterization of Atrial Fibrillation in Man: Studies Following Open Heart Surgery*. Pacing and Clinical Electrophysiology, 1(4), 426-438. doi:10.1111/j.1540-8159.1978.tb03504.x |
es_ES |
dc.description.references |
Zhang, F., & Lian, Y. (2009). QRS Detection Based on Multiscale Mathematical Morphology for Wearable ECG Devices in Body Area Networks. IEEE Transactions on Biomedical Circuits and Systems, 3(4), 220-228. doi:10.1109/tbcas.2009.2020093 |
es_ES |